

MEKANIKA DAN ELEMEN MESIN

Untuk SMK / MAK Kelas X

Penulis : ARIF FIRDAUSI

Editor Materi : AGUNG SETYO BUDI

Editor Bahasa

Ilustrasi Sampul

Desain & Ilustrasi Buku: PPPPTK BOE MALANG

Hak Cipta © 2013, Kementerian Pendidikan & Kebudayaan

MILIK NEGARA

Semua hak cipta dilindungi undang-undang.

Dilarang memperbanyak (mereproduksi), mendistribusikan, atau memindahkan sebagian atau seluruh isi buku teks dalam bentuk apapun atau dengan cara apapun, termasuk fotokopi, rekaman, atau melalui metode (media) elektronik atau mekanis lainnya, tanpa izin tertulis dari penerbit, kecuali dalam kasus lain, seperti diwujudkan dalam kutipan singkat atau tinjauan penulisan ilmiah dan penggunaan non-komersial tertentu lainnya diizinkan oleh perundangan hak cipta. Penggunaan untuk komersial harus mendapat izin tertulis dari Penerbit.

Hak publikasi dan penerbitan dari seluruh isi buku teks dipegang oleh Kementerian Pendidikan & Kebudayaan.

Untuk permohonan izin dapat ditujukan kepada Direktorat Pembinaan Sekolah Menengah Kejuruan, melalui alamat berikut ini:

Pusat Pengembangan & Pemberdayaan Pendidik & Tenaga Kependidikan Bidang Otomotif & Elektronika:

Jl. Teluk Mandar, Arjosari Tromol Pos 5, Malang 65102, Telp. (0341) 491239, (0341) 495849, Fax. (0341) 491342, Surel: vedcmalang@vedcmalang.or.id_Laman: www.vedcmalang.com

DISKLAIMER (**DISCLAIMER**)

Penerbit tidak menjamin kebenaran dan keakuratan isi/informasi yang tertulis di dalam buku tek ini. Kebenaran dan keakuratan isi/informasi merupakan tanggung jawab dan wewenang dari penulis.

Penerbit tidak bertanggung jawab dan tidak melayani terhadap semua komentar apapun yang ada didalam buku teks ini. Setiap komentar yang tercantum untuk tujuan perbaikan isi adalah tanggung jawab dari masing-masing penulis.

Setiap kutipan yang ada di dalam buku teks akan dicantumkan sumbernya dan penerbit tidak bertanggung jawab terhadap isi dari kutipan tersebut. Kebenaran keakuratan isi

menjadi tanggung jawab dan hak diberikan pada penulis dan pemilik asli. Penulis bertanggung jawab penuh terhadap setiap perawatan (perbaikan) dalam menyusun informasi dan bahan dalam buku teks ini.

Penerbit tidak bertanggung jawab atas kerugian, kerusakan atau ketidaknyamanan yang disebabkan sebagai akibat dari ketidakjelasan, ketidaktepatan atau kesalahan didalam menyusun makna kalimat didalam buku teks ini.

Kewenangan Penerbit hanya sebatas memindahkan atau menerbitkan mempublikasi, mencetak, memegang dan memproses data sesuai dengan undang-undang yang berkaitan dengan perlindungan data.

Katalog Dalam Terbitan (KDT)
Teknik Elemen dan Mekanika, Edisi Pertama 2013
Kementerian Pendidikan & Kebudayaan
Direktorat Jenderal Peningkatan Mutu Pendidik & Tenaga Kependidikan, th. 2013: Jakarta

KATA PENGANTAR

Puji syukur kami panjatkan kepada Tuhan yang Maha Esa atas tersusunnya buku teks ini, dengan harapan dapat digunakan sebagai buku teks untuk siswa Sekolah Menengah Kejuruan (SMK) Bidang Studi keahlian Teknologi dan Rekayasa, Teknik Elemen dan Mekanika.

Penerapan kurikulum 2013 mengacu pada paradigma belajar kurikulum abad 21 menyebabkan terjadinya perubahan, yakni dari pengajaran (*teaching*) menjadi BELAJAR (*learning*), dari pembelajaran yang berpusat kepada guru (*teachers-centered*) menjadi pembelajaran yang berpusat kepada peserta didik (*student-centered*), dari pembelajaran pasif (*pasive learning*) ke cara belajar peserta didik aktif (*active learning-CBSA*) atau *Student Active Learning-SAL*.

Buku teks "Teknik Elemen Dan Mekanika" ini disusun berdasarkan tuntutan paradigma pengajaran dan pembelajaran kurikulum 2013 diselaraskan berdasarkan pendekatan model pembelajaran yang sesuai dengan kebutuhan belajar kurikulum abad 21, yaitu pendekatan model pembelajaran berbasis peningkatan keterampilan proses sains.

Penyajian buku teks untuk Mata Pelajaran "Teknik Elemen Dan Mekanika" ini disusun dengan tujuan agar supaya peserta didik dapat melakukan proses pencarian pengetahuan berkenaan dengan materi pelajaran melalui berbagai aktivitas proses sains sebagaimana dilakukan oleh para ilmuwan dalam melakukan eksperimen ilmiah (penerapan scientifik), dengan demikian peserta didik diarahkan untuk menemukan sendiri berbagai fakta, membangun konsep, dan nilai-nilai baru secara mandiri.

Kementerian Pendidikan dan Kebudayaan, Direktorat Pembinaan Sekolah Menengah Kejuruan, dan Direktorat Jenderal Peningkatan Mutu Pendidik dan Tenaga Kependidikan menyampaikan terima kasih, sekaligus saran kritik demi kesempurnaan buku teks ini dan penghargaan kepada semua pihak yang telah berperan serta dalam membantu terselesaikannya buku teks siswa untuk Mata Pelajaran Teknik Elemen Dan Mekanika kelas X/Semester 1 Sekolah Menengah Kejuruan (SMK).

Jakarta, 12 Desember 2013 Menteri Pendidikan dan Kebudayaan

Prof. Dr. Mohammad Nuh, DEA

DAFTAR ISI

		Halaman						
Samı Kata Dafta	Pengantar	i ii						
BAB	I BEARING							
1.	Pendahuluan	8						
2.	Jenis — jenis Bearing	9						
	a) Tabel Bearing dan Ukurannya	13						
	b) Table klasifikasi bearing serta karakteristiknya	18						
3.	Perawatan Bearing	19						
4.	Pemasangan dan Pelepasan bearing	27						
5.	Umur Bearing	33						
6.	Kondisi Bearing	35						
7.	Safety							
8.	Lampiran	37						
9.	Daftar pustaka							
BAB	II BAUT DAN MUR (BOLT AND NUT)	70						
1.	Penggunaan tension wrench	71						
2.	Pelumasan drat	83						
3.	Kerusakan drat	83						
4.	Pengencangan awal alat pengikat (fastener)	83						
5.	Pengencangan baut dan mur	84						
6.	Urutan pengencangan	84						
7.	Jenis—jenis bolt and nut	100						
8.	Kekuatan ulir	101						
9.	Lembar latihan dan soal—soal latihan	129						

BAI	B III RODA GIGI	132
1.	Macam—mcam roda gigi	132
2.	Perhitungan roda gigi	139
	- kekuatan roda gigi terhadap kelenturan	145
3.	Soal dan latihan	149
BAI	B IV PULLEY	150
1.	Macam ban mesin	150
2.	Pemilihan sabuk V	150
3.	Perhitungan sabuk dan puli	156
4.	Latihan dan lembar soal evaluasi	167
		-
BAE	3 V RANTAI	168
1.	Pendahuluan	169
2.	Pemeliharaan	172
3.	Pembersihan	173
4.	Kerusakan	173
5.	Perlu di perhatikan pada rantai	
BAE	3 VI POROS	176
1.	Pendahuluan	176
2.	Poros arah gaya	177
3.	Perhitungan poros	184
	- macam jenis poros	184
	- poros fleksibel	185
	A.tegangan bidang pada bantalan	
	B.tegangan lentur	191

ВА	B VII	KOPLING	201				
1.	Pe	endahuluan	201				
2.	M	enurut fungsinya	201				
	- k	copling tetap	201				
- kopling tidak tetap							
ВА	B VII	PEGAS	207				
1.	Ma	cam—macam pegas	207				
2.	Me	ncari perhitungan pegas	208				
	a.	Panjang tidak berbeban	209				
	b.	Mencari besarnya diameter	209				
	C.	Besarnya refleksi pada pegas penampang bulat	211				
	d.	Besarnya refleksi pada pegas	211				

BAB I

BEARING

I. PENDAHULUAN

Bearing adalah suatu elemen mesin yang menumpu poros berbeban, sehingga putaran atau gerakan bolak-baliknya dapat berlangsung secara halus, aman, dan berumur panjang. Bearing ini harus cukup kokoh untuk menahan beban dari poros yang terhubung dengan komponen mesin lainya sehingga dapat berputar, bekerja sesuai dengan fungsinya. Jika bantalan tidak berfungsi dengan baik, maka prestasi seluruh sistem akan menurun bahkan bisa terhenti. Bantalan dalam permesinan dapat disamakan perannya dengan pondasi pada gedung.

Untuk bearing dengan jenis bola mempunyai kemampuan untuk putaran tinggi dan gesekan yang kecil. Bearing ini bisa mudah didapat dan mudah pula dalam pemasangannya. Bearing mempunyai bentuk dan ukuran tertentu sesuai dengan kodenya dan mempunyai ukuran yang presisi. Apalagi untuk yang bentuk bola dengan cincin yang sangat kecil maka besar per satuan luas menjadi sangat penting. Dengan demikian bahan yang dipakai juga harus mempunyai ketahanan dan kekerasan yang tinggi. Bahan yang biasa dipakai pada pembuatan bearing adalah baja khrom karbon tinggi.

Bearing ini dapat diklasifikasikan atas; Bearing Radial, Bearing axial. Menurut jenis elemen gelindingnya dibedakan atas bentuk bola dan rol.

- a. Bearing axial: arah beban yang ditumpu adalah tegak lurus sumbu poros.
- b. Bearing Radial: arah beban yang ditumpu sejajar dengan sumbu poros.
- c. Untuk *Bearing khusus*; dapat menumpu beban yang arahnya sejajar dan tegak lurus sumbu poros.

Untuk itu dalam penggunaan juga harus diperhatikan bagaimana gaya atau beban bekerja, baru menentukan jenis bearing yang digunakan. Untuk pelumasan pada bearing ini juga sangat penting karena akan menentukan keawetan dari bearing. Karena dengan ada pelumasan, maka akan memperkecil kerusakan akibat gesekan bola dan cincinn

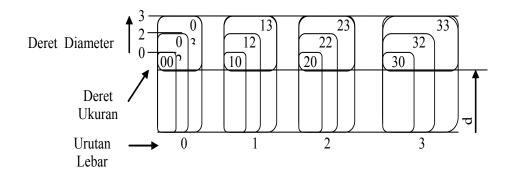
II. JENIS-JENIS BEARING

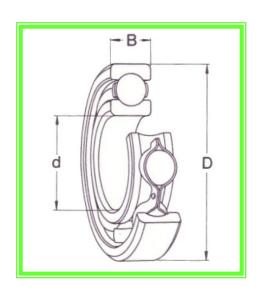
Identifikasi Bearing

Gambar Potongan	Nama Bearing	Kode Depan
	Bearing Bola Radial Alur dalam Baris Tunggal	60, 62, 63, 160
	Bearing Bola Radial Alur dalam Baris Ganda	42, 43
	Bearing Bola kontak sudut baris tunggal	72, 73
	Bearing Bola kontak sudut baris Ganda	32, 33

Contoh:

Kode Bearing : 6203 NU 2212


	Bearing Bola Bolak Balik Baris Ganda	12, 13, 22, 23
	Bearing rol silinder baris tunggal	NU 2, NU 3, NU 10, NU 22, NU 23
	Bearing rol bulat gan- da	213, 222, 223
r ₂ nicht festgelegt	Bearing Rol Tirus Ba- ris Tunggal	302
	Bearing bola aksial satu arah	512


Bentuk: 62 NU 22

Urutan diameter Poros : 03 12

Diameter Poros: 17 mm 60 mm

Tabel Bearing.

_	uoei Bearing.												
		De	ret Ukura				kuran 2				kuran 3		
	s,			earing			de Beari	ng		1	de Beari	ng	
	Diameter Poros	Diameter Luar	160	60	Diameter Luar	62 72	42	32	Diameter Luar	63 73	43	33	
	r G	٦			7	12	22	32	ا ا	13	23	33	
	ete	ete		NU 10	ete	NU 2	NU 22		ete	NU 3	NU 23		
	au	ᇤ			a a		222		a a	213	223		
	ā	ā			ā				ā				
	d	D	Leb	ar B	D		Lebar B		D		Lebar B		
	,	4.0			40	_		,	40	_		,	
	4	12	-	4	13	5	٠.	7	16	5	-	9	
	5	14		5	16	5	٠.	8	19	6		10	
	6	17		6	19	6		10	22	7	11	13	
	7	19		6	22	7		11	26	9	13	15	
	8	22		7	24	8		12	28	9	13	15	
	9	24		7	26	8		13	30	10	14	16	
	10	26		8	30	9	14	14	35	11	17	19	
	12	28	7	8	32	10	14	15,9	37	12	17	19	
	15	32	8	9	35	11	14	15,9	42	13	17	19	
	17	٥٥	۰	4.0	40	40	4.0	17.5	47		40	00.0	
	20	35 42	8	10 12	40 47	12 14	16 18	17,5	47 52	14 15	19 21	22,2	
	25	42	8	12	52	15	18	20,6 20,6	62	17	24	22,2 25,4	
	20	47	°	12	52	10	10	20,0	02	17	24	20,4	
	30	55	9	13	62	16	20	23,8	72	19	27	30,2	
	35	62	9	14	72	17	23	27	80	21	31	34,9	
	40	68	9	15	80	18	23	30,2	90	23	33	36,5	
					0.5				400	0.5		00.7	
	45	75	10	16	85	19	23	30,2	100	25	36	39,7	
	50	80	10	16	90	20	23	30,2	110	27	40	44,4	
	55	90	11	18	100	21	25	33,3	120	29	43	49,2	
	60	95	11	18	110	22	28	36,5	130	31	46	54	
	65	100	11	18	120	23	31	38,1	140	33	48	58,7	
	70	110	13	20	125	24	31	39,7	150	35	51	63,5	
								,				,-	
	75	115	13	20	130	25	31	41,3	160	37	55	68,3	
	80	125	14	22	140	26	33	44,4	170	39	58	68,3	
	85	130	14	22	150	28	36	49,2	180	41	60	73	
	90	140	16	24	160	30	40	E0 4	100	43	0.4	73	
	95	145	16	24	170	32	43	52,4 55,6	190 200	45	64 67	77,8	
	100	150	16	24	180	34	46	60,3	215	47	73		
	100	100	10	24	100	34	40	00,3	210	47	15	82,6	

Tabel Bearing dan Ukurannya

			Ball E	Bearing	DIN 6	625 T1 (9.	59)		(mm)		
	Nomer Bear- ing		Jenis	s 62		Nomer Bear- ing		Kode	e 63		
		d	D	В	r		d	D	В	r	
	6200	10	30	9	1	6300	10	35	11	2	
h (6202	15	35	11	1	6302	15	42	13	2	
1 000	6204	20	47	14	1,5	6304	20	52	15	2	
	6205	25	52	15	1,5	6305	25	62	17	2	
19	6206	30	62	16	1,5	6306	30	72	19	2	
0 1.0	6207	35	72	17	2	6307	35	80	21	2,5	
	6208	40	80	18	2	6308	40	90	23	2,5	
7777	6209	45	85	19	2	6309	455	100	25	2,5	
	6210	50	90	20	2	6310	50	110	27	3	
B	6211	55	100	21	2,5	6311	55	120	29	3	
	6212	60	110	22	2,5	6312	60	130	31	3,5	
	6313	65	120	23	2,5	6313	65	140	33	3,5	
	6214	70	125	24	2,5	6314	70	150	35	3,5	
	6220	100	180	34	3,5	6320	100	215	47	3,5	

		Axial Bea	ring DIN 71	1 (9.59)	ļ	mm
	Nomer Bearing	d_w	d_g	D	Н	r
	512 04	20	22	40	14	1
4	512 05	25	27	47	15	1
	512 06	30	32	52	16	1
	512 07	35	37	62	18	1,5
0,0	512 08	40	42	68	19	1,5
	512 09	45	47	73	20	1,5
	512 10	50	52	78	22	1,5
H	512 11	55	57	90	25	1,5
	512 12	60	62	95	26	1,5
	512 13	65	67	100	27	1,5
	512 14	70	72	105	27	1,5

	De	ret Ukura				kuran 2				kuran 3	
 Diameter Poros	Diameter Luar	160	Bearing 60 NU 10	Diameter Luar	62 72 12 NU 2	22 NU 22 22 22 22	ng 32	Diameter Luar	63 73 13 NU 3 213	23 NU 23 223	ng 33
d	D	Leb	ar B	D		Lebar B		D		Lebar B	
4 5 6	12 14 17		4 5 6	13 16 19	5 5 6		7 8 10	16 19 22	5 6 7		9 10 13
7 8 9	19 22 24	-	6 7 7	22 24 26	7 8 8	-	11 12 13	26 28 30	9 9 10	13 13 14	15 15 16
10	26	-	8	30	9	14	14	35	11	17	19
12	28	7	8	32	10	14	15,9	37	12	17	19
15	32	8	9	35	11	14	15,9	42	13	17	19
17	35	8	10	40	12	16	17,5	47	14	19	22,2
20	42	8	12	47	14	18	20,6	52	15	21	22,2
25	47	8	12	52	15	18	20,6	62	17	24	25,4
30	55	9	13	62	16	20	23,8	72	19	27	30,2
35	62	9	14	72	17	23	27	80	21	31	34,9
40	68	9	15	80	18	23	30,2	90	23	33	36,5
45	75	10	16	85	19	23	30,2	100	25	36	39,7
50	80	10	16	90	20	23	30,2	110	27	40	44,4
55	90	11	18	100	21	25	33,3	120	29	43	49,2
60	95	11	18	110	22	28	36,5	130	31	46	54
65	100	11	18	120	23	31	38,1	140	33	48	58,7
70	110	13	20	125	24	31	39,7	150	35	51	63,5
75	115	13	20	130	25	31	41,3	160	37	55	68,3
80	125	14	22	140	26	33	44,4	170	39	58	68,3
85	130	14	22	150	28	36	49,2	180	41	60	73
90	140	16	24	160	30	40	52,4	190	43	64	73
95	145	16	24	170	32	43	55,6	200	45	67	77,8
100	150	16	24	180	34	46	60,3	215	47	73	82,6

		•	Self Ali	gning	Ball E	Bearing I	DIN 6	30 T1	(5.60)
	Nom er		Kod	e 12		Nom er		Kod	e 12	
	Bear- ing	d	D	В	r	Bear- ing	d	D	В	r
	1204	20	47	14	1, 5	1304	20	52	15	2
~ /	1205	25	52	15	1, 5	1305	25	62	17	2
	1206	30	62	16	1, 5	1306	30	72	19	2
1/1	1207	35	72	17	2	1307	35	80	21	2, 5
0 +	1208	40	80	18	2	1308	40	90	23	2, 5
	1209	45	85	19	2	1309	45	10 0	25	2, 5
	1210	50	90	20	2	1310	50	11 0	27	3
B	1211	55	100	21	2, 5	1311	55	12 0	29	3
	1212	60	110	22	2, 5	1312	60	13 0	31	3, 5
	1213	65	120	23	2, 5	1313	65	14 0	32	3, 5
	1214	70	125	24	2, 5	1314	70	15 0	35	3, 5

			Cylind	drical I	Roller	Beari i mm	_	N 5412 T1 ((6.82)
	× 5	Nomer Bearing	d	D	В	r	r ₁		
7 17		204	20	47	14	1,5	1		
7777		205	25	52	15	1,5	1		
Kand	$\sqrt{1-1}$	206	30	62	16	1,5	1		
The state of the s	×	207	35	72	17	2	1		
	27777	NU 208	40	80	18	2	2		
()		209	45	85	19	2	2		
100		NJ 210	50	90	20	2	2		
5	ИЛ	Oder 211	55	10 0	21	2,5	2		
		NUP 212	60	11 0	22	2,5	2		
B NU		Oder 213	65	12 0	23	2,5	2,5		
NO		N 214	70	12 5	24	2,5	2,5		
		215	75	13 0	25	2,5	2,5		
		216	80	14 0	26	3	3		15

		1	aperre	ed Roll	er Bea	ring DI	N 720 (2.79)					
	Nomer		Kode 302										
	Bearing	d	D	В	С	Τ	r	r ₁	а				
3	302 04	20	47	14	12	15,2 5	1	1	11				
	302 05	25	52	15	13	16,2 5	1	1	13				
P	302 06	30	62	16	14	17,2 5	1	1	14				
B	302 07	35	72	17	15	18,2 5	1,5	1,5	15				
	302 08	40	80	18	16	19,7 5	1,5	1,5	17				
T	302 09	45	85	19	17	20,7 5	1,5	1,5	18				
r_2 nicht festgelegt	302 10	50	90	20	18	21,7 5	1,5	1,5	20				
	302 11	55	100	21	19	22,7 5	2	1,5	21				
	302 12	60	110	22	20	23,7 5	2	1,5	22				
	302 13	65	120	23	21	24,7 5	2	1,5	23				
	302 14	70	125	24	22	26,2 5	2	1,5	25				
	302 15	75	130	25	23	27,2 5	2	1,5	27				
	302 16	80	140	26	24	28,2 5	2,5	2	28				

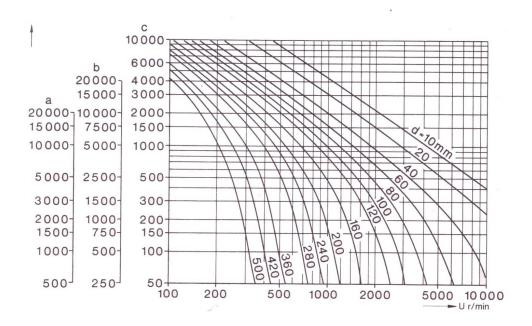
Self /	Aligning Roller	Bearin	ng sing	le Rov	v DIN	6.35 T1 (8.87)	mm			
	Nomer		Kode	202		Kurzzeichen	Kode 203			
	Bearing	d	D	В	r	1)	d	D	В	r
	202 04	20	47	14	1,5	203 04	20	52	15	2
	202 05	25	52	15	1,5	203 05	25	62	17	2
7 4	202 06	30	62	16	1,5	203 06	30	72	19	2
	202 07	35	72	17	2	203 07	35	80	21	2, 5
5	202 08	40	80	18	2	203 08	40	90	23	2, 5
	202 09	45	85	19	2	203 09	45	100	25	2, 5
	202 10	50	90	20	2	203 10	50	110	27	3
	202 11	55	100	21	2,5	203 11	55	120	29	3
В	202 12	60	110	22	2,5	203 12	60	130	31	3, 5
) Bei kegeliger ohrung 1:12 wird die	202 13	65	120	23	2,5	203 13	65	140	33	3, 5
lummer mit K ergänzt.	202 14	70	125	24	2,5	203 14	70	150	35	3, 5
	202 15	75	130	25	2,5	203 15	75	160	37	3, 5
	202 16	80	140	26	3	203 16	80	170	39	4

	Self Aligning Roller Bearing Double Row DIN 635 T2 (11.842) mm					
	1	er Bearing		Kode	213	
	Diameter Poros	Ketirusan Poros	d	D	В	r
. (,	213 04	213 04 k	20	52	15	2
	213 05	213 05 k	25	62	17	2
7/1/1/	213 06	213 06 k	30	72	19	2
THE I	213 07	213 07 k	35	80	21	2,5
	213 08	213 08 k	40	90	23	2,5
1:12	213 09	213 09 k	45	100	25	2,5
	213 10	213 10 k	50	110	27	3
9 7	213 11	213 11 k	55	120	29	3
	213 12	213 12 k	60	130	31	3,5
	213 13	213 13 k	65	140	33	3,5
	213 14	213 14 k	70	150	35	3,5
7/1//	213 15	213 15 k	75	160	37	3,5
	213 16	213 16 k	80	170	39	3,5
B	213 17	213 17 k	85	180	41	4
	213 18	213 18 k	90	190	43	4
	213 19	213 19 k	95	200	45	4
_	213 20	213 20 k	100	215	47	4

TABEL Klasifikasi bearing serta karakteristiknya

		Klasi	ifikasi			ı	Karakter	istik				
B e b a n		lemen elinding	Baris	Jenis	Beba n radial	Beba n aksial	Pu- taran	Ketahan an ter- hadap tum- bukan	Gesek an	Keteli- tian		
			Baris	Alur dalam	Se- dang	Se- dang	San- gat tinggi	Rendah	Ren- dah			
		Bola	tung- gal	Ma- pan sendiri *	San- gat rin- gan	San- gat rin- gan	Ting- gi	Sangat rendah	San- gat rendah	Tinggi		
R a d i			Baris ganda	Ma- pan sendiri	rin- gan	San- gat rin- gan	Ting- gi	Sangat rendah	Ren- dah	Se- dang		
a	а	а	а			Alur dalam	Se- dang	Rin- gan	Se- dang	Rendah		
	1	Silind	Baris tung- gal	Jenis N, NU*	Berat	Tidak dapat	Ting- gi	Tinggi	Ren- dah	Tinggi		
	R o I	er	Baris ganda	Jenis NN		Tidak dapat	Ting- gi	Tinggi	Se- dang	Tinggi		
	'	Bulat	Baris ganda	Ma- pan sendiri	San- gat Berat	Se- dang	Se- dang	Tinggi	Tinggi	Se- dang		
G			Baris tung-	Kon- tak sudut	Se- dang	Agak berat	San- gat tinggi			Tinggi		
a b		Bola	gal	Mag- neto	Rin- gan	Rin- gan	Ting- gi	Rendah	Ren- dah			
u n g			Baris ganda	Kon- tak sudut	Se- dang	Se- dang	Se- dang			Se- dang		
a			Baris t	unggal	Berat					Tinggi		
n	Rol Keruc- ut		`	ganda*	San- gat Berat	Berat	Se- dang	Tinggi	Tinggi	Se- dang		
Α		Bola		unggal janda		Agak berat	Ren- dah	Rendah	Ren- dah	Tinggi		
k s i a		Silind er		unggal, a, tiga*	Tidak dapat	San- gat berat	San- gat Ren- dah	Tinggi	Tinggi	Se- dang		
I		Keruc ut	Baris to	unggal*		Dorut	Agak berat					

ntuk Jadwal perawatan dari bearing dapat dibuat berdasarkan dari tingkat kebutuhan


Keterangan :
a. * menyatakan bantalan yang dibuat hanya atas pesanan khusus
b. Ketelitian yang dinyatakan adalah ketelitian tertinggi yang terdapat

III. **Perawatan Bearing**

Untuk perawatan dari bearing tidaklah memerlukan perhatian khusus atau pengecekan yang khusus. Hal ini karena bearing tidak ada komponen yang rumit. Jadi pada intinya adalah pemberian pelumasan sesuai dengan kerja yang ada.

Tabel pelumasan sesuai dengan jumlah jam pemakaian

- Radial-Kugellager Zylinderrollenlager, Nadellager Pendelrollenlager, Kegelrollenlager, Axial-Kugellager

Demands	Bearings without lubrication	Bearings with max- imum lubrica- tion	Hydrody- namic bear- ings	Hydro- static bearings	Aerody- namic bear- ings	Aerostat- ic bear- ings
Loading capacity	low	low to medium	medium to high	medium	very low	low
Sliding speed	low	low to medium	medium to high	zero to medium	very high	very high
Small starting torque	normally		satisfactory	excellent	satisfactory	excellent
Small fric- tion torque at steady state	not recom- mended	satisfac- tory	satisfad	ctory	excellent	
Precision of radial setting	bad	Ç	good	excellent	good	good
Lifetime	limited but ble		theoretically endless, but limited by starts and run-outs number	theoreti- cally end- less	theoretical- ly endless, but limited by starts and run- outs num- ber	theoreti- cally endless
Mix of axial and radial loading capacity	axial s	supporting face must be done for absorbing axial load			load	
Still run- ning	good for stationery devices	excellent	excellent	excellent, apart the possible pump noise	excellent	excellent, but com- pressed noise is possible

Lubrica- tion sim- plicity	excellent		separate system can be used with certain limi- tation of speed, load- ing and di- ameter	additional high pres- sure pump neces- sary	excellent	supply of com- pressed, dry and clean air neces- sary		
Availabil- ity of standard parts	good to excellent	excellent	good	not suitable				
Protection against pollution of product and environ- ment	abrasion can be a limiting factor	is necess	normally satisfactory, but sealing is necessary, except when work- ng liquid can be used for lubricant			excellent		
Starts and run- outs number. Frequent rot. direc- tion change	excellent	good, generally good	enerally good, general excellent		bad	excellent		
Operating expenses	very	low	depends on the com- plexity of lubrication system	price of lubricant supply must be consid- ered	none	price of gas sup- ply must be con- sidered		

Ambient condi- tions	Bearings without lubrica- tion	Bearings with lim- ited lubri- cation	Hydrody- namic bearings	Hydro- static bearings	Aerody- namic bearings	Aero- static bearings
High tempera- ture	satisfacto- ry, de- pends on the mate- rial	beware of oxidation: lubrication resistance necessary	beware of oxidation: lubricant resistance necessary	excel- lent	excellent	
Low tempera- ture		possible limitation from lubri- cant, re- spect to starting torque necessary	possible limitation from lubri- cant, re- spect to starting torque necessary	possible limita- tion from lubricant	excellent, ideally dried gas neces- sary	
Outside vibra- tions	normally satisfacto- ry, except when im- pact load- ing peak exceeds loading capacity	satisfacto- ry	excellent	normally satisfac- tory	excellent	

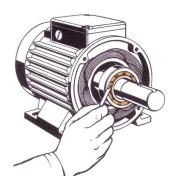
dari mesin. Sehingga jadwal perawatan dari masing masik seksi akan berbeda. Untuk itu dapat dicontohkan beberapa komponen yang ada dan juga posisi bearing, sehingga akan mendapatkan suatu rencana pelumasan bearing yang optimal.

Contoh:

N o.	Nama Kom- ponen	Posisi	Kode/ nama Bearing	Jenis Pe- Iumas	Periode Pe- Iumasan	Pe- nanggung Jawab
1.	Konveyor	Poros driver	T 206	Grease	3 bln	Thomas

Contoh Format Daftar Pelumasan

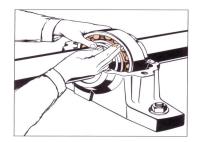
N o.	Tanggal Pe- Iumasan	Nama Pe- lumas	Posisi Bearing	Kode/ Nama Bearing	Nama Op- erator	TTD
1.	10 – 6 - 07	Oli SAE 50	Poros KOnveyor	Single Roll- er (62)	Toni	



ı				
ŀ				
1				

Perawatan Bearing

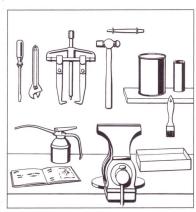
1. Pemberian pelumas pada Bearing motor (dynamo).



2. Pembersihan kerak atau karat pada gear bo

3. Pemberian grease Pada Bearing

X



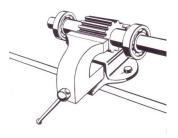
Pemasangan dan Pelepasan Bearing

Alat-Alat yang diperlukan untuk melepas dan memasang bearing:

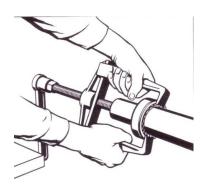
Prosedur Urutan Melepas Bearing:

- a. Menganalisa tentang cara melepas bearing
- b. Menyiapkan alat-alat untuk bongkar pasang bearing
- c. Melepas bearing dari ikatan poros/housing. (snap ring, Ring C, Baut)
- d. Melepas bearing. Bisa dengan trecker.

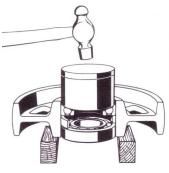
Prosedur Urutan Memasang Bearing:


- a. Membersihkan poros dari kotoran/karat dengan kain pembersih.
- b. Memilih kode bearing sesuai dengan kode
- c. Memasang bearing sesuai dengan spesifikasinya
- d. Menguji apakah pemasangannya sudah benar atau belum. (dengan memutar poros, lihat letak bearing, mengukur jarak masing-masing tepi bearing.
- e. Memberi pelumas pada bearing

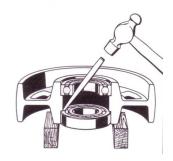
Untuk cara-cara pelepasan/pemasangan bearing:


1. Penjepitan harus pada ragum, karena untuk memudahkan dalam pelepasan bearing.

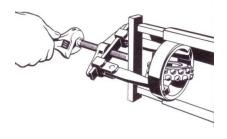
2. Pelepasan bearing dengan menggunakan trecker, dengan cara memasang lengan trecker pada bearing dan memutar baut pengencangnya sampai bearing terlepas.



3. Pelepasan bearing dengan menggunakan trecker, dengan cara memasang lengan trecker pada bearing dan memutar lengannya tetapi baut pengencangnya ditahan meja sampai bearing terlepas.



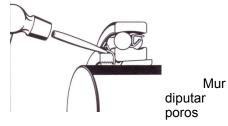
4. Untuk pemasangan pada Rumah bearing, maka harus memakai pipa atau benda bulat sebesar ring luar dari bearing dan bisa dipukul.

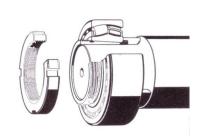


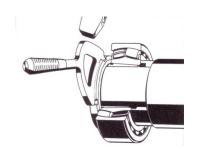
5.

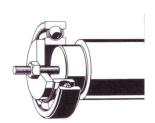
Cara mudah untuk melepas bearing dalam posisi sempit dapat menggunakan besi lunak dan dipukulkan pada poros bearing

6. Cara melepas bearing jenis ini dengan memutar bola bearing, kemudian memasukkan trecker lengan ujung luar kemudian menariknya seperti pada gambar ini ;



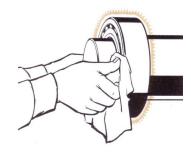

7. Untuk jenis bearing dengan ring pengunci, maka setelah memasang harus ringnya dilipat pada alurnya. Begitu pula apabila meepas, maka ring tersebut harus diluruskan lagi.





9. Sebelum pemasangan sebaiknya diberipelumas agar lebih mudah masuknya:

10. diputar dengan baut. Memasang bearing dengan penutup yang


11. Pemasangan bearing dengan handpress atau hydrolik pres

12. Pemasangan bearing dengan cara dipanaskan dengan suhu 90°, kemudian dimasukkan pada porosnya dengan sarung tangan

Untuk menguji hasil pasangan, maka beberapa cara yang dapat diambil:

- 1. Mendengarkan putaran bearing,
- 2. Melihat kelurusan bearing
- 3. Melihat kelurusan poros
- 4. Memutar bearing
- 5. Memutar poros
- 6. Melihat kesesakan bearing
- 7. Mengecek kode bearing
- 8. Mengecek posisi (keterbalikan) bearing1.

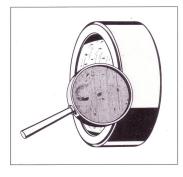
V. Umur Bearing

Umur L _n				
beban	2000 – 4000 (jam)	5000 – 15000 (jam)	20000 – 30000 (jam)	40000 – 60000 (jam)
	Pemakaia n jarang	Pemakaian sebentar- sebentar (tidak terus-menerus)	Pemakaian terus-menerus	Pemakaian terus- menerus dengan keandalan tinggi
Kerja ha- lus tanpa tumbukan	Alat listrik rumah tangga, sepeda	Konveyor, mesin pengangkat, lift, tangga jalan	Pompa, poros transmisi, separator, pengayak, mesin perka- kas, pres pu- tar, separator sentrifugal, sentrifus pem- urni gula, mo- tor listrik	Poros, transmisi utama yang memegang peranan penting, motor-motor listrik yang penting

Kerja biasa	Mesin pertanian, gerinda tangan	,	Motor kecil, roda meja, pemegang pinyon, roda gigi reduksi, kereta rel	Pompa penguras, mesin pabrik, kertas, rol kalender, kipas angin, kran, penggiling bola, motor utama kereta rel listrik.
Kerja dengan getaran atau tumbuka n		Alat-alat besar, unit roda gigi dengan getaran besar, rolling mill	Penggetar, penghancur	

vı. Kondisi Bearing

Kondisi bearing yang ada sangat ditentukan dari aspek pemekaian dan cara pemasangan. Untuk kedua aspek ini akan menentukan bearing tersebut rusak atau tidak, cacat, karat dan lainnya. Dan pada akhirnya bearing tersebut harus diganti agar tidak menyebabkan kerusakan poros atau komponen lainya. Beberapa hal yang sering terjadi tentang kerusakan bearing:


- a. Tepi Bearing retak
- b. Bearing kondisi longgar/goyang
- c. Rumah bearing berkarat
- d. Kerusakan pada seal (dari pemakaian)
- e. Terdapat bunyi gemerisik pada bearing
- f. Roda peluru pecah
- g. Bearing setelah dipasang menjadi sesak

Alasan Masing-masing kerusakan:

- a. Tepi retak:
 - Beban kejut
 - Berhenti mendadak tanpa, sehingga ada momen pengereman
 - Kesalahan pemasangan yang akibat dari pengepresan yang tidak merata
- a. Bearing longgar:
 - Sudah aus karena lama pemakaian
 - Beban pemakaian yang overload
- b. Rumah bearing berkarat:
 - Kurang pelumasan
 - Pemakaian yang berhubungan dengan air.
- c. Kerusakan pada seal
 - Pemakaian yang terlalu panas
 - Kurang pelumasan
 - Waktu pemakaian yang terlalu lama
- d. Bunyi gemerisik:
 - Kurang pelumasan
 - Roda peluru aus
- e. Roda peluru pecah:
 - Beban overload
 - Pemakaian yang lama

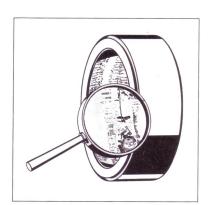
- Ada beban kejut
- f. Bearing setelah dipasang menjadi sesak :
 - Suaian dari poros atau rumah bearing terlalu sesak
 - Ada ketirusan atau cacat pada poros atau rumah bearing
- 1. Ada beban kejut, sehingga ring luar bearing rusak.

Kerusakan akibat lama pemakaian,

karat

Bearing yang lama berhenti dan berkarat, pamakaian yang lama, Beban

yang overload.



Akibat dari Pengencangan yang terlalu keras sehingga tepi ring jadi cepat aus.

2.

3.

VII.

Safety

Aspek safety pada pemasangan dan pelepasan bearing harus diperhatikan, walaupun terlihat sangan sepele. Karena untuk pemasangan kadang berhubungan dengan benda yang berat, palu, juga panas. Untuk Pelepasan kadang juga ada sesuatu yang patah, terlempar, atau pecah. Untuk itu perlu sekali adanya alat keselamatan kerja atau suatu cara untuk menghindari adanya kecelakaan.

Alat-alat keselamatan kerja yang dipakai pada pelepasan dan pemasangan beraring adalah:

- 1. Kaca mata
- 2. Sarung tangan kulit.
- 3. Sepatu kerja
- 4. Pakaian Kerja

Sikap kerja:

- Jangan memegang bearing panas hanya dengan tangan.
- Pakailah pipa atau bahan berdiameter untuk memasang bearing agar dapat lurus.
- Jangan memukul bearing langsung dengan palu, karena dapat cacat, sehingga sulit masuk ke poros atau rumah bearing.

 Apabila yang sesak porosnya maka saat menekan atau memukul dengan pipa, maka diameter harus pada diameter poros tersebut, tidak pada ring luar bearing.

PERHITUNGAN BANTALAN

Bantalan merupakan elemen mesin yang berfungsi sebagi penumpu suatu poros yang berbeban dan berputar. Dengan adanya bantalan maka putaran dan gerakan bolak-balik berlangsung secara halus, aman dan tahan lama.

Bantalan harus mempunyai ketahanan terhadap getaran maupun hentakan. Jika suatu sistem menggunakan konstruksi bantalan, sedangkan bantalannya tidak berfungsi baik, maka seluruh sistem akan menurun prestasinya.

Macam-macam bantalan

Menururt arah beban yang diderita oleh elemen maka bantalan dibagi menjadi dua macam yaitu :

- Bantalan Radial. Bila arah beban yang ditumpu oleh bantalan arahnya tegak lurus sumbu poros.
- 2. Bantalan axial. Bila rah beban yang ditumpu oleh bantalan arahnya searah dengan sumbu poros.

Menurut dasar gerakan bantalan terhadap poros :

- 1. Bantalan Peluru. Pada bantalan ini terjadi gesekan gelinding antara bagian yang berputar dan yang diam, melalui elemen peluru seperti bola (peluru), rol jarum dan rol bulat.
- 2. Bantalan Luncur. Pada bantalan ini terjadi gesekan luncur antar poros dan bantalan. Karena permukaan poros ditumpu oleh permukaan bantalan.

A. BANTALAN PELURU

Bantalan peluru mempunyai keuntungan bahwa gesekan sangat kecil, bila dibandingkan dengan jenis bantalan lain.

Elemen peluru (elemen putar) seperti bola atau rol, dipasang diantara cincin luar dan cincin dalam. Dengan memutar salah satu cincin tersebut, bola dan rol akan membuat gerakan berjalan dan berputar. Cincin berfungsi juga sebagai penutup.

Ketelitian pembuatan rol dan bola merupkan keharusan. Karena luas bidang kontak antara bola atau rol dengan cincinnya sangat kecil, maka besarnya beban sangat kecil.

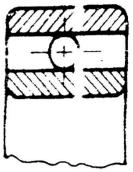
Karena besarnya bidang kontak sangat kecil, maka besarnya persatuan luas atau tekanan menjadi tinggi. Dengan demikian syarat dari bahan yang dipakai harus mempunyai kekerana dan ketahanan yang tinggi.

Menurut ukuran diameter luar dan dalam dari bantalan peluru, maka bantalan peluru apat dibagi menjadi beberapa kategori yaitu : (lihat tabel 16).

Tabel 16. Ukuran diameter dan ketegorinya

Ukuran	Ketegori
Ukuran luar lebih besar dari 800 mm.	Ultra besar
Ukuran luar 180 sampai 800 mm.	Besar
Ukuran luar 80 sampai 180 mm.	Sedang
Ukuran diameter dalam 10 mm atau lebih dan	Kecil
diameter sampai 80 mm.	Diameter
Diameter dalam kurang dari 10 mm dan diameter luar	Kecil
9 mm atau lebih.	Miniatur
Diameter luar kurang dari 9 mm.	iviii iiatui

Dalam pemakaian bantalan dapat dibagi menjadi 3 yaitu :


- 1. Bantalan otomob
- 2. Bantalan mesin
- 3. Bantalan instrumen

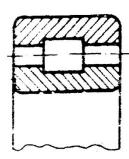
Jenis-jenis Bantalan Peluru

□ Bantalan Radial

Bantalan peluru ada dua macam yaitu bentuk bantalan bola dan bantalan rol (lihat gambar 1 dan gambar 2).

a. **Bantalan bola radial**. Dapat berfungsi sebagai pendukung beban radial. Yaitu beban yang tegak lurus sumbu poros. Dapat digunakan untuk putaran yang

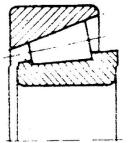
tinggi, dan harganya murah.


Gambar 1. Bantalan Bola.

b. Bantalan rol dan silindris. (Gambar 2). Bantalan rol silindris dapat mendukung beban radial yang tinggi dan terpisah. Pemasangan dan pembongkran sederhana.

Gambar 2. Bantalan bola silindris

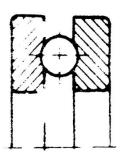
B. Bantalan rol dan silindris. (Gambar 2). Bantalan rol silindris dapat mendukung beban radial yang tinggi dan terpisah. Pemasangan dan pembongkran sederhana.


Gambar 2. Bantalan bola silindris

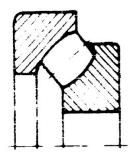
- □ Bantalan Peluru Kontak Sudut (Gambar 3 dan Gambar 4)
- a. Bantalan bola Kontak sudut (Gambar 3). Bantalan bola kontak sudut dalam satu arah. Sudut kontak adalah 40°. Penggunaannya sering berpasangan dan saling

berhadapan atau berbalikan. Untuk mendukung gaya radial dan aksial dalam satu arah.

Gambar 3. Bantalan Kontak Sudut

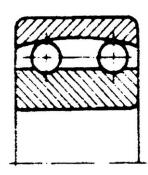

B. **Bantalan Rol Tirus** (Gambar 4). Bantalan rol tirus mendukung beban radial dan aksial dari arah trtentu. Dapat mendukung dan membawa beban yang tinggi.

Gambar 4. Bantalan Rol Tirus

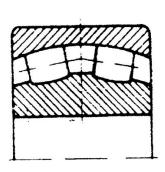

□ Bantalan Peluru Aksial

a. **Bantalan Aksial satu arah**. Bantalan ini hanya digunakan untuk mendukung beban aksial saja. Beban aksial sebaiknya tidak terlalu rendah.

Gambar 5. Bantalan Aksial



b. **Bantalan Rol Aksial Bulat**. Bantalan ini dipergunakan untuk mendukung beban aksial yang besar. Bantalan ini dapat menyesuaikan sendiri dan harus dilumasi dengan oli.


Gambar 6. Bantalan Aksial Rol Bulat.

□ Bantalan Menyetel Sendiri

a. **Bantalan Bola menyetel Sendiri**. Bantalan ini hanya dapat menahan bahan kecil.

Gambar 7. Bantalan Bola menyetel Sendiri

b. Bantalan Rol Menyetel Sendiri. Bantalan ini disebut juga bantalan Loop. Dapat menahan bahan aksial yang besar.

Gambar 6. Bantalan Rol menyetel Sendiri

B. GESEKAN PADA PELURU

Gesekan terjadi antar peluru dan cincin. Besarnya gesekan tergantung dari pelumasan, type-type bantalan peluru, ukuran bantalan, beban, kecepatan dan kondisi perputaran.

Mekanika Dan Elemen Mesin

Gesekan pada bantalan bola biasanya lebih kecil bila dibandingkan dengan bantalan rol. Pada umumnya kehilangan daya, karena gesekan adalah sangat kecil danbiasanya dapat diabaikan.

Koefisien gesekan umumnya besarnya sebagai berikut :

Untuk bantalan bola : μ = 0,0016 ... 0,0066.

Untuk bantalan rol : $\mu = 0,0012 \dots 0,0083$.

Baha bantalan peluru mempunyai kekerasan 62 \pm 3 HRc. Bahan bantalan peluru dibuat dari baja khrom. Analisis unsur-unsurnya sebagai berikut :

$$C = 0.25...1.05\%$$
, $Mn = 0.25...0.4\%$

$$S_i = 0.15...0.35\%$$
, Mn = 1.4...1.6%

Untuk elemen putar $C_r = 0,4...1,6\%$

C. PELUMASAN

Pelumasan harus membentuk film minyak sebagai pemisah anara cincin dan rol atau bola putarnya. Agar supaya dapat mencegah gesekan aau mengurangi gesekan dan keawetan dari bantalan.

Dalam Pemilihan sistem pelumasan, sangat perlu diperhatikan konstruksinya, kondisi kerja dan letak bantalannya. Tempat pelumasan, lokasi kerja, bentuk dan kekasaran alur minyak juga merupakan faktor-faktor yang sangat penting yang harus diperhatikan.

Jika minyak pelumas, selain melindungi bantalan dari gesekan juga mencegah terjadinya korosi. Dalam hal ini misalnya sistem pelumasan dengan grase. Grease tersebut menutup bantalan agar terhindar dari debu yang mengotori yang kemungkinan bisa masuk ke dalam ringga bantalan bagian dalam.

Pelumasan oli dimaksudkan juga sebagai pendingin bila timbul panas sewaktu bantalan bekerja. Pada umumnya grease dan oli dipergunakan dalam sistem pelumasan bantalan.

- 1. Pelumasan dengan paselin (grase). Pada umumnya disenangi dalam kalangan teknik. Sebab sederhana persyaratannya dan perawatannya dan berfungsi ganda, yaitu sebagai perapat (seal) serta penutup. Hanya pada putaran tinggi, pelumasan dengan menggunakan grase tidak cocok. Jadi bila putaran tinggi harus menggunakan oli.
- 2. *Pelumasan dengan memakai oli*. Pelumasan dengan oli digunakan pada bantalan yang mempunyai putaran tinggi.

D. KAPASITAS NOMINAL BANTALAN PELURU

Ada dua macam kapasitas nominal, yaitu kapasitas nominal dinamis spesifik dan kapasitas nominal statis spesifik. Yang dimaksud dengan kapasitas nominal dapat dijelaskan sebagai berikut :

Misalnya sejumlah bantalan menerima beban radial tanpa variasi, dalam arah yang tetap, jika bantalan tersebut adalah radial, maka bebannya adalah radial murni. Dalam hal ini satu cicin berputar dan satu cincin diam.

Jika elemen putarnya tersebut berputar 1.000.000 (33,3 γ rpm selama 500 jam). Dan setelah menjalani putaran tersebut lalu diuji. Jika hasilnya 90% dari bantalan sampai tidak ada kerusakan karena kelelahan putaran, pada elemen-elemennya, maka besarnya beban tersebut umur nominal.

Jika bantalan menderita beban dalam keadaan diam dan pada titik kontak yang menerima tegangan maksimum besarnya deformasi permanen pada elemen putar, ditambah besarnya deformasi cincin menajdi i/10.000 x diameter elemen putar, maka beban tersebut dinamakan kapasitas nominal statis spesifik.

Kedua beban nominal ini, merupakan dasar dalam pemilikan bantalan.

Rumusan untuk mencari harga kapasitas nominal dinamis (C) pada bantalan sebagai berikut :

C = $K(i.cos\alpha)^{0.7}$, $Z^{2/3}$. $D_b^{1.8}$... Untuk $D_b \le 25.4$ mm.

C = 3,647K i.cos α)^{0,7}, Z^{2/3}. D_b^{1,4} ... Untuk D_b > 25,4 mm.

C = $K(i.1_{er} \cos \alpha)^{7/9}$, $Z^{3/4}$. $D_r^{29/27}$

C = Kapasitas nominal dinamis spesifik.

I = Jumlah garis bola bantalan dalam satu bantalan.

 α = Sudut kontak nominal.

Z = Jumlah bola dalam tiap baris.

D_b = Diameter bola.

K = Faktor yang besarnya tergantung dari jenis, kelas ketelitian dan bahan bantalan.

1_{er} = panjang efektif rol.

Untuk mencari harga kapasitas nominal statis (Co) pada bantalan adalah sebagai berikut :

Untuk bantalan bola radial : $C_o = K_o I Z D_b^2 Cos \alpha$

Untuk bantalan aksial : C_o = 5 I Z D_b^2 Sin α .

Untuk bantalan bola radial : C_0 = 2,2 I Z 1_{er} . D_r .Cos

I = Jumlah baris bola dalam bantalan dalam satu bantalan.

Z = Jumlah bola dalam tiap baris.

D_r = Diameter bola.

D_b = Diameter bola.

1_{er} = Panjang efektif rol.

 α = Sudut kontak nominal.

K_o = Faktor yang besarnya = 1,25 untuk bantalan radial

= 0,34 untuk bantalan yang menyetel sendiri.

Pada kenyataannya dalam perdagangan, diameter bola, panjang rol, maupun jumlah bola atau rol serta sudut kontak tidak diketahui. Sehingga rumus C dan C_{\circ} itu hanya dipergunakan sebagai dasar perhitungan standard.

E. PERHITUNGAN UMUM BANTALAN

Tekanan, gesekangesekan pada bidang kontak, menyebabkan elemen putar dan cincin akan membawa ke titik kelelahannya, hingga bantalan menjadi tidak berfungsi sebagaimana mestinya.

Dengan memberikan beban atau putaran tertentu, maka titik kelelahannya suatu bantalan dapat ditentukan secara teliti.

Umur bantalan ditentukan sebagai berikut :

Diambil sample pengujian 90% dari jumlah sample. Setelah 1.000.000 putaran, tidak memperlihatkan kerusakan karena kelelahan putar.

$$\left(\frac{C}{P}\rho \times 10^6 \, putaran\right)$$

Umur bantalan : L

L = umur bantalan.

C = Kapasitas nominal dinamis.

P = beban ekivalen.

ρ = Eksponen yang ditentukan oleh jenis bantalan.

 ρ = 3...Untuk bantalan bola

 ρ = 3,33...untuk bantalan rol.

Umur dalam jam:

$$L_n = \frac{L}{n}.1,67.10^4$$

F. BEBAN EKIVALEN

Beban ekivalen dapat dijelaskan sebagai berikut :

Yang dimaksud dengan beban ekivalen dinamis adalah suatu beban yang besarnya sedemikian rupa, sehingga memberika umur yang sama dengan umur yang diberika oleh beban dan putaran yang sebenarnya.

Beban ekivalen dinamis dirumuskan sebagai berikut :

Misalnya sebagai bantalan membawa beban radial Fr (kg) dan beban aksial Fa (kg). Maka beban radial ekivalen dinamis p (kg) untuk bantalan radial, kontak sudut dan bantalan radial.

P =
$$(X V Fr = Y Fa) Ks. K_T$$

Fr = Beban radial

Fa = Beban aksial

X = Faktor beban radial.

V = Faktor rotasi

V = 1 – bila beban putar pada cincin dalam

V = 1,2 – bila beban putar pada cincin luar

K_s = Faktor keamanan (lihat tabel 18)

 K_T = Faktor suhu.

Faktor suhu diperhitungkan bila suhu kerja $> 100^{\circ}$ C. Untuk bantalan baja biasa (tabel 16).

Tabel 17 Faktor suhu

t° C	125°	150°	200°
Κ _τ	1,05	1,1	1,25

Tabel 18.**Beban radial dan aksial, faktor X dan Y untuk bantalan bola** dan bantalan rol.

		Beban		Baris	tungg	jal		Baris	ganda		
Туре	Sudut konta k	relatif Fa	$\frac{F}{VI}$	$\frac{a}{F_r} \le$	$C = \frac{I}{VI}$	$\frac{7}{7r} > C$	$\frac{F}{VI}$	$\frac{Ca}{Er} \le C$	$\frac{F}{VFr}$ >	С	С
	N.	\overline{Co}	Х	Υ	Χ	Υ	X	Υ	Х	Υ	
Bantala n bola radial	0	0,014 0,028 0,056 0,084 0,11 0,17 0,28 0,42 0,56	1	0	0,5	2,3 0 1,9 9 1,7 1 1,5 5 1,4 5 1,3 1 1,1 5	1	0	0,56	2,3 0 1,9 9 1,7 1 1,5 5 1,4 5 1,3 1 1,1 5	0,1 9 0,2 2 0,2 6 0,2 8 0,3 0 0,3 4 0,3 8 0,4 2
						1,0 0				1,0 0	0.4 4

Bantala n bola Kontak sudut		0,014 0,129 0,057 0,086 0,11 0,17 0,29 0,43 0,57	1	0	0,4	1,8 1 1,6 2 1,4 6 1,3 4 1,2 2 1,1 3 1,0 4 1,0	1	2,08 1,84 1,69 1,52 1,39 1,30 1,20 1,16 1,16	0,74	2,9 4 2,6 3 2,3 7 2,0 8 1,9 8 1,8 4 1,6 9	0,3 0 0,3 4 0,3 7 0,4 1 0,4 5 0,8 4 0,5 2
	18-20 24-26 30 35,36 40	-	1	0	0,4 3 0,4 1 0,3 9 0,3 7 0,3	1 1,0 0 1,0 0 0,8 7 0,7 6 0,6 6 0,5	1	1,09 0,92 0,78 0,66 0,55	0,70 0,67 0,63 0,60 0,57	1,6 2 1,6 3 1,4 4 1,2 4 1,0 7	4 0,5 4 0,5 7 0,6 8 0,8 0 0,9 5 1,1
Bantala					5	7		0.45		2 0,6	4
n rol tirus	-	-	1	0	0,4	0,4 Cot	1	0,45 Cot	0,67	7 Cot	1,5 tg

Beban ekivalen untuk bantalan rol silindris dengan rol pendek.

 $P = Fr. K_s. K_T$

Untuk bantalan aksial:

P = Fa. K_s . K_T

Tabel 19. Harga Faktor Keamanan K_s

Beban Bantalan	K _s	Contoh-contoh penggunaan
Beban tetap. Tidak ada kejutan		Bantalan yang digunakan
Beban dengan kejutan beban lebih sampai 125%.	1,3 - 1	Bantalan untuk penggerak roda gigi, untuk gaya luar yang tetap mesin-mesin perkakas, motor- motor listrik, konveyor.
Beban dengan kejutan bebas, beban lebih sampai 150% dari beban nominal.	1,3 - 1 81,8	Bantalan untuk traktor, kereta apai, kereta barang, mobil, motor bakar, mesin skrap, mesin ketam dan sebagainya ($K_T = 1.5 - 1.8$)
Beban dengan kejutan berat, beban lebih sampai 300% dari beban nominal.		Bantalan untuk mesin-mesin tempa, penghancur batu, roll meja, rolling mill.

Beban ekivalen statis radial Po dan beban radial Fr beban aksial Fa, maka :

Po = Xo.Fr + Yo.Fa

Xo = Faktor beban radial bantalan.

Yo = Faktor beban aksial bantalan.

Fr = Beban radial.

Fa = Beban aksial.

Jika P<Fr, maka menggunakan rumus Po = Fr.

Harga Co (Beban statis speksifik) dapat ditentukan juga dengan rumus

berikut:

Co = So.Po

50

Po = Beban ekuivalen statis.

So = Faktor keamanan statis.

Untuk rol bulat (spherical roller trust bearing) So = 2

Untuk keperluan normal rata-rata So = 1,0

Untuk pemakaian getaran halus So = 0.5Pemakaian pada beban kerja So = 1.5 - 2Pemakaian pada putaran-putaran So = 2

(TIDAK JELAS)

Gambar 9. Diagram harga C/P

Tabel 20. Faktor Xo dan Yo

Untuk bantalan baris tunggal, bila Fa/V.Fr

Maka X = 1, Y = 0

Contoh 1:

Jenis Bantalan	Baris Tunggal	Baris Ganda		
	Xo	Yo	Xo	Yo
Bantalan bola				
radial		0,47		0,94
α = 12°	0.5	0,37	4	0,74
α = 26°	0,5	0,28	1	0,56
α = 36°		0,26		0,52
$\alpha = 40^{\circ}$				

Suatu bantalan bola diperlukan pada putaran 1000 rpm dengan membawa beban konstan Fr = 4000 N dan untuk mencapai umur nomonal speksifik minimum Lh = 2000 jam kerja. Berapa ukuran bantalan yang diperlukan ?

Jawab:

Dari diagram gambar 9, Perbandingan beban C/P didapat = 10,6 C

 $= 10,6 \times P$

 $= 10,6 \times 4000$

= 42400 N.

Dari tabel akan bantalan dengan C = 42.500 N.

Kedua-duanya cocok untuk kondisi tersebut. Pertimbangan dan penentuan dan penentuan terakhir diameter poros.

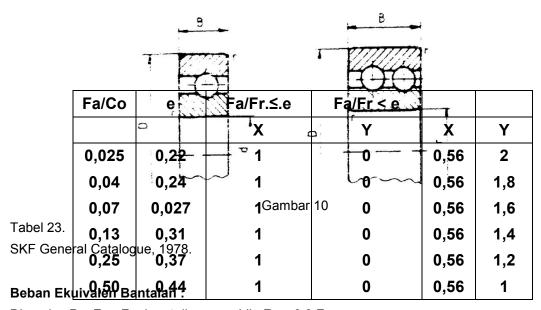
Tabel-tabel bantalan (SKF General Catalogue 1978)

Tabel 21. Bantalan bola radial

SKF General Catalogue, 1978.

Beban ekuivalen berlaku:

Beban dinamis = P = X.Fr + 0.5.Fa


Beban statis = Po = 0.6.Fr + 0.5.Fa

Bila Po < Fr Po = Fr

Uk	uran (ı	mm)	Beban n	ominal	Beban	outaran	r
d	D	В	Dinamis	Statis	Grease	Oil	(min)
5							
6							
7							
9							
1	19						
0	13	6	1290	629	32000	38000	05
1	22	3,5	630	315	38000	45000	03
5	26	7	2500	1240	30000	36000	05
1	26 28	8	3550	1960	26000	32000	05
7	_	8	3550	1960	28000	34000	05
2	32	9	4300	2500	22000	28000	05
0	35	10	4650	2800	19000	24000	05
2	47	14	9800	6200	15000	18000	15
5	52	15	10800	6950	12000	15000	15
3	62	16	15000	10000	10000	13000	15
0	80	21	25500	18000	8500	10000	25
3	90	23	31500	22400	7500	9000	25
5	10	25	40500	30000	6700	8000	25
4	0	7	48000	4250	9000	11000	05
0	6						
4							
5							
5							
0							

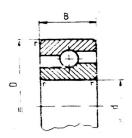
Tabel 22. Perhitungan Faktor

Dinamis : P = Fr + Fa dapat dipercaya bila Fa = 0.3 FrStatis : Po = 0.6 Fr + 0.5 Fa bila Po < Fr maka Po = Fr

Tabel 24. Bantalan bola kontak sudut

Gambar 11

D kuivale	В	D.:				
kuivale		Dinamis	Statis	Grease	Oil	(min)
30	n Banta	an : 6400	5400	18000	22000	1
32 [:] P	14		PO≲Fr mal 5700	ka Po ≣ Fr 17000	20000	1
35 F	o = 0,5 l	Fr + 0,26 Fa. 7800	6800	14000	17000	1
40	16	10400	9300	12000	15000	1,5
47	. 18	13700	12700	10000	13000	1,5
5. Bant	alan rol	radjal 15000	14600	9000	11000	1,5
62	20	18700	49600	8000	9500	1,5
72	23	23200 🕇	25500	6700	8000	2
80	23	27500	32000	6000	7000	2
90	23	28500	56808///	5300	6300	2
120	28	42500_	54000	4300	5000	2,5
		ıļi		- P		
	32 : F 35 : F 40 47 Bant 52 62 72 80 90	32: F = XFr + 14r + 35: Fo = 0.5 F	32: F = XFr + Yfa_dimana 35: Fo = 0,5 Fr + 0,26 Fa. 40	32: F = XFr + Yfa dimana PO Fr mal 6800 35: Fo = 14,5 Fr + 0.26 Fa. 6800 40	32: F = XFr + Yfa dimana PO Fr maka Po Fr a fr 5700 6800 14000 40 16 10400 9300 12000 47 18 13700 12700 10000 Fr adial 15000 14600 9000 62 20 18700 4960 8000 72 23 23200 72 23 23200 6700 80 23 27500 52000 6000 90 23 28500 5300 120 28 42500 54000 4300	32: F = XFr + Yfa_dimana PO Fr maka Po Fr 20000 2000 35: Fo = 0,5 Fr + 0,26 Fa. 6800 14000 17000 40 16 10400 9300 12000 15000 47 18 13700 12700 10000 13000 Eantalan rol radial 5000 14600 9000 11000 62 20 18700 49600 8000 9500 72 23 23200 72 23 23200 7325599 6700 8000 900 120 28 42500 5300 5300 5300 5300 120 28 42500 54000 4300 5000


Gambar 12

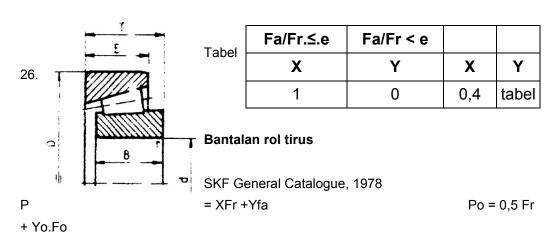
SKF General Catalogue, 1978.

Beban ekuivalen bantalan :

P = Fr

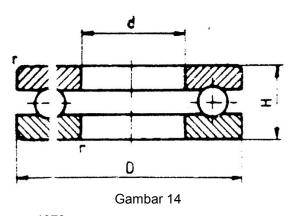
Po = Fr

Uk	uran (n	nm)	Beban n	ominal	Batas p	utaran	
d	D	В	Dinamis	Statis	Grease	Oil	r (min)
			C(N)	Co(N)			
10	30	9	380	2120	19000	28000	1
12	32	10	5400	3050	17500	24000	1
15	35	11	6200	3650	14000	19000	1
17	40	12	7650	4650	14000	19000	1
20	47	14	10200	6400	11000	16000	1
25	62	17	19000	12200	8500	12000	1
30	62	16	15600	11000	8500	12000	2
35	72	17	20800	15000	7500	10000	1,5
40	80	18	24500	18600	6700	9000	2
45	85	19	27500	21200	6300	8500	1
50	90	20	28500	23200	5600	7500	1
50	100	21	36000	29000	5300	7000	2,5
60	110	22	23000	36000	4800	6300	2,5


Gambar 13

е	Fa/Fı	⁻ .≤.e	Fa/Fr ≥ e		
е	X	Y	X	Y	
1,14	1	0	0,35	0,57	

Uk	curan (n	nm)	Beban no	ominal	Batas p	utaran	r
d	D	В	Dinamis C	Statis	Grease	Oil	(min)
			(N)	Co(N)			
15	35	11	8150	4250	19000	24000	1
17	40	12	9800	5250	17000	20000	1
20	47	14	13400	7350	15000	18000	1,5
25	52	15	15300	8800	12000	15000	1,5
30	62	16	20400	12000	10000	13000	1,5
35	72	17	19000	17600	9000	11000	2
40	68	15	21200	13400	9500	12000	1,5
40	80	16	38000	24000	8500	10000	2
45	75	16	26500	17500	9000	11000	1,5
45	85	23	54000	37600	7000	8500	2
50	80	16	26500	17600	8500	10000	1,5
60	95	18	32000	22400	6700	8000	2
65	100	18	32000	22800	6300	7500	2
70	110	20	48000	34000	6000	7000	2
<u> </u>							



Beban ekuivalen bantalan :

P = Fa Po = Fa

Tabel 27. Bantalan Bola aksial

SKF General Catalogue, 1978.

G. SUAIAN DAN TOLERANSI PADA PEMASANGAN

1. Toleransi

Ketelitian ukuran akan memperngaruhi keadaan pemasangan bantalan dan poros atau bantalandengan rumah bantalan. Ketelitian yang tinggi, memberikan kelonggaran yang sesuai dan mengurangi kesalahan pada pemasangan, sehingga umur kerja bantalan dapat dipertahankan sesuai dengan keadaan yang sebenarnya.

Kelonggaran mula dan kelonggaran kerja harus dibedakan dan diperhitungakan

Ukura	an (n	nm)	Beban n (N		Batas p	utaran		_		Υ	V-
d	D	Т	Dinamis C(N)	Statis Co (N)	Grease	Oil	В	E	r	Y	Yo
15 17 20 22 25 28 30 32 35 40 45 50 55	4 2 4 0 4 2 4 4 5 2 5 5 5 8 6 2 6 8 7 5 8 0 9 0	1 4 1 3 1 5 1 5 1 6 1 7 1 7 1 8 1 9 2 0 2 0 2 3	19300 16300 20800 21600 23000 30500 31500 36500 45000 52000 69500	12700 11000 15600 16300 21600 24500 26000 30500 40000 44000 64000	900 9000 8500 8000 7000 6700 6300 6000 5300 4800 4500 4000	1300 1300 0 1200 0 1100 0 9600 9000 8500 7000 6300 6000 5300	1 3 1 2 1 5 1 5 1 9 1 7 1 7 1 8 1 9 2 0 2 0 2 3	11 11 12 11, 5 11, 5 12 13 14 14, 5 15, 5 17, 5	1,5 1,5 1 1,5 1,5 1,5 1,5 1,5 2	2,1 1,7 1,6 1,5 1,4 1,4 1,3 1,6 1,5 1,4 1,5	1,1 0,9 0,8 0,8 0,7 0,7 0,9 0,8 0,8

dalam perencanaan. Kelonggaran mula adalah kelonggaran yang diberikan pada umumnya. Sedangkan kelonggaran kerja adalah kelonggaran yang harus diperhitungkan karena adanya pengembangan komponen pada waktu komponen bekerja, karena timbul panan yang ditimbulkan karena komponen bergeserkan pada waktu bekerja.

Untuk bantalan bola dipilih 15 sampai dengan j5 untuk poros J6 untuk lubang (rumah).

Untuk bantalan rol dipilih k5 sampai dengan m5 untuk poros K6 untuk rumah.

1. Kondisi Beban

Dalam pelaksanaannya, pemilihan bantalan, maka faktor gaya-gaya, waktu bekerja, cincin mana yang bekerja/berputar, kenaikan temperature harus diperhitungkan. Yang terpenting adalah pertimbangan terhadap cincin mana yang berputar.

Jika cincin dalam yang berputar maka cincin itu harus terpasang kuat pada porosnya (lihat gambar 15), yang berarti harus menggunakan suaian sesak. Jika cincin luar yang berputar maka cincin tersebut harus terpasang kuat pada rumah bantalan, memakai suaian sesak (lihat gambar 16).

Ukuran (mm)			Beban nominal		Batas putaran		
d	D	Н	Dinamis C (N)	Statis Co (N)	Grease	Oil	r (min)
10	24	9	6700	8800	7000	9500	0,5
12	26	9	6950	10000	7000	9500	0,5
15	28	9	7200	11200	6300	8500	0,5
17	30	9	7500	12200	6300	8500	0,5
20	35	10	9800	16600	5600	7500	0,5
25	42	11	12200	22800	4800	6300	1
30	47	11	12900	26500	4500	6000	1
35	52	12	13400	30000	4300	5600	1
40	60	13	18000	40000	3800	5000	1
45	65	14	18600	45000	3400	4500	1
50	70	17	19600	50000	3400	4500	1
55	78	16	23600	62000	3000	4000	1
60	85	17	27500	71000	2600	3600	1,5
65	90	18	28500	78000	2400	3200	1,5
70	95	18	32500	88000	2400	3200	1,5

Bila cincin dalm berputar, beban statis dan cincin luar berputar bersama beban maka, suaian yang dianjurkan sebagai berikut :

a. Suaian poros

Bantalan bola kecil d lebih kecil atau sama dengan 40 mm menggunakan j5.

Ukuran menengah d antara 40 – 100 menggunakan j6, k6.

Ukuran besar d lebih dari 100 mm menggunakan k6, m6, n6.

Bantalan rol kecil d lebih atau sama dengan 60 mm menggunakan j6k6.

Ukuran mencegah d antara 60 – 200 mm menggunakan k6, m6 dan n6.

b. Suaian lubang yang dianjurkan adalah H6, H7, J7, P7, M7, N7.

Bila cincin luar berputar beban tetap dan cincin dalam berputar maka suaian dianjurkan adalah sebagai berikut :

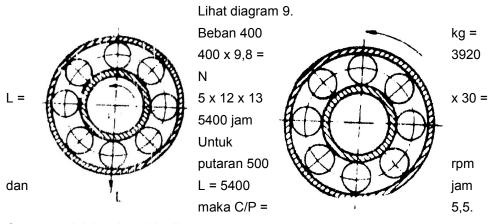
a. Suaian poros yang dianjurkan adalah : h6, h5, g5, g6.

b. Suaian lubang yang dianjurkan adalah:

Untuk beban kecil normal memakai K7, K6.

Untuk beban normal, kejut M7, M6.

Untuk beban besar dan kejut N7, N6.


Untuk beban, kejut dan rumah bantalan tipis memakai P7, P6.

Untuk poros maka basis lubang harus dipakai, sedangkan untuk rumah harus menggunakan basis poros.

Contoh:

1.Pilihlah suatu bantalanuntuk suatu mesin kendaraan untuk mendukung beban dinamis radial sebesar : 400 kg pada rumah bantalan. Kecepatan putaran 500 rpm. Untuk masa pakai (umur) 3 tahun, dan digunakan 5 jam/hari.

Jawab:

Caranya adalah sebagai berikut :

Hubungan garis putaran pada titik 500 rpm dan garis beban pada titik 5400 jam maka memotong garis perbandingan C/P.

Dari tabel 20.

Diambil bantalan dengan C = 25.500 N.

Ukuran bantalan sebagai berikut :

Ukuran-ukuran yang didapat sebagai berikut :

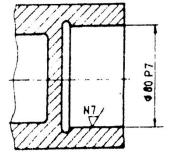
d = 35 mm

D = 80 mm

B = 21 mm

Gambar 17

Bantalan yang dipilih


Toleransi yang dipilih untuk porosnya adalah j5.

Toleransi yang dipilih untuk lubang/rumah P7.

Gambar rencana poros dan rumahnya

Gambar 18

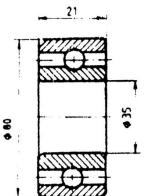
Gambar 19

Poros bantalan

Rumah bantalan

2. Rencanakanlah sebuah bantalan balokkontak sudut baris tunggal mendukung beban radial 800 kg dan beban aksial 220 kg. Putaran mesin 300 rpm. Diinginkan bantalan dapat dipergunakan sebanyak 150 juga putaran.

Beban diperkirakan statis cincin dalam.


Beban putar pada cincin dalam.

Jawab:

Diketahui Fa = 220 kg

$$Fr = 800 \text{ kg}$$

$$P = (X.V.Fr \pm Y Fa) Ks.Kt$$

V = 1 (beban putar pada cincin dalam)

$$\frac{Fa}{VFr} = \frac{220}{1.800} = 0,275$$

Dari tabel 21 maka diambil X = 1 dan Y = 0. Dari tabel 18 Ks = 1; karena suhu diperkirakan mencapai 120° maka Kt = 1,05.

$$\left(\frac{C}{P}\right)^p \times 10^6.putaran$$

$$15.10^6 = \left(\frac{C}{840}\right)^3$$

$$C = \sqrt[3]{150 \times 840} = 4463 \text{ kg}$$
$$= 43739 \text{ N}.$$

Lihat tabel 23.

Untuk C = 43000 N maka dipilih bantalan dengan ukuran

d = 35 mm

D = 80 mm

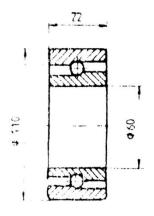
B = 21 mm

Gambar 20

Bantalan yang dipilih

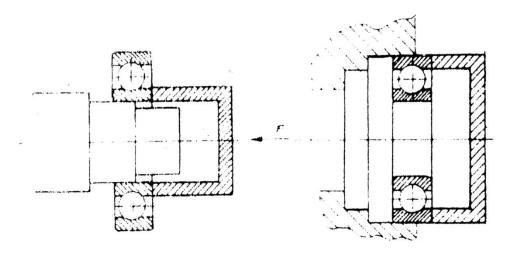
H. MEMASANG DAN MELEPAS BANTALAN PELURU

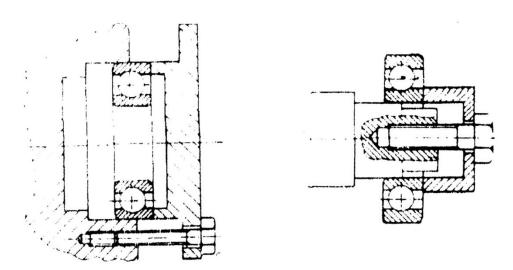
Kerusakan dini sebelum masa pakai berakhir sering disebabkan karena pada waktu pemasangan yang tidak sempurna. Oleh karena pada waktu pemasangan



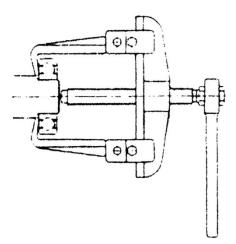
bantalan ini harus bentul-betul diperhatikan, tentang masalah kebersihan, letak dan posisinya.

Pemasangan bantalan pada poros, pemasangan dengan suaian sesak sering harus dipanaskan terlebih dahulu. Biasanya pemanasan dilakukan dalam minyak atau over pemanas, pada temperatur-temperatur ini struktur bahan, kekerasan atau ukuran-ukuran bantalan memungkinan dapat berubah. Pemasangan dapat juga dengan menggunakan peralatan tekan hidrolis atau dengan pukulan-pukulan biasa, untuk pemasangan yang tidak sesak. Bila suaian dengan suaian tekan atau pressfit maka rumah harus dipanaskan terlebih dahulu.


Yang harus diperhatikan dalam pemasangan atau melepas bantalan adalah pada waktu dilangsungkan pemasangan pukulan atau gaya langsung dikenakan pada ring dalam atau ring luar. Jangansekali-kali dikenakan langsung pada elemen yang berputar atau elemen pelurunya.


Jangan memukul langsung denganpada ring tetapi gunakan alat bantu yang berupa bus atau pipa agar bantalan dapat dengan mudah dan baik serta

tepat tetapi tidak merusak bantalan sendiri (lihat gambar 21).

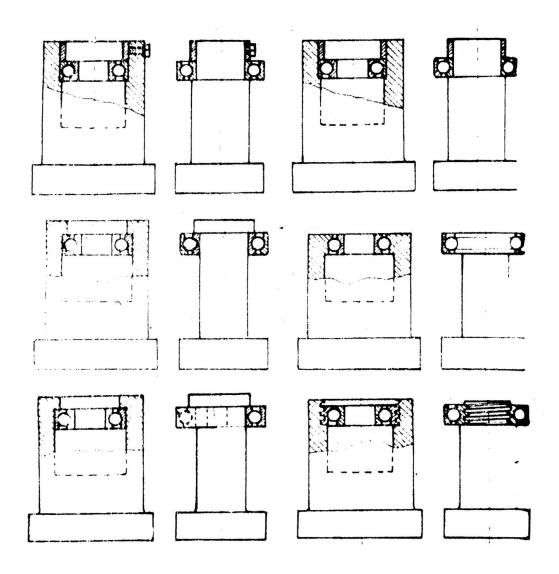


Gambar 21. Pemasangan bantalan

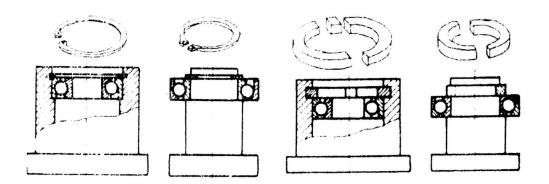
Untuk melepas bantalan dapat dipergunakan alat seperti gambar 22 ini.

Gambar 22. Tracker

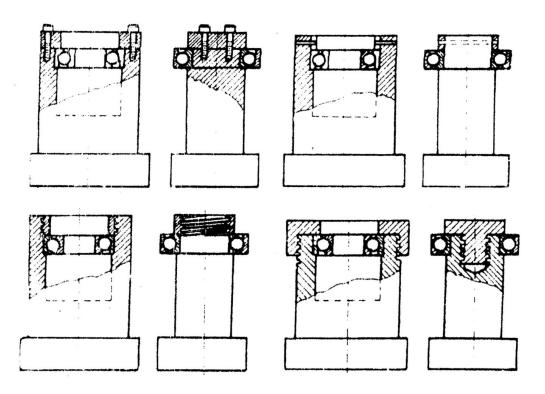
Hal-hal yang perlu diperhatikan dalam persiapan memasang bantalan adalah sebagai berikut :


- 1. Rencanakanlah langkah-langkah pemasangan dengan baik, cek kembali temperatur pemasangan yang diperlukan.
- 2. Cek kembali apakah anda telah menyiapkan bantalan betul, sesuai dengan spesifikasi yang ditentukan dalam gambar kerja.
- 3. Bersihkan dengan baik poros atau rumah. Jangan menggunakan kapas dalam membersihkan kotoran dan kelembaban.
- 4. Cek kembali toleransi dan suaian yang tertera pada gambar kerja bagi poros dai rumahnya.

Pada konstruksi peralatan yang memakai bantalan bola, setelah bantalan dapat dipasang dengan baik biasanyadikancing, atau diberi ring penetap dan penguat agar bantalan tidak lagi berubah posisinya.


Gambar-gambar berikut ini menunjukkan cara pengancing dan pemberian ring pada konstruksi bantalan (gambar 23, 24).

Gambar 25 adalah contoh penggunaan bantalan bola pada suatu peralatan.



Gambar 23. **Pengancingan Bantalan**

Gambar 24. Pengancingan Bantalan

Tabel Toleransi untuk Poros dan Bearing

Latihan:

- 1. Apa kegunaan bearing?
- 2. Ada berapa jenis bearing dan fungsi masing-masing jenis?
- 3. Apa arti bearing dengan kode 6206?
- 4. Berapa beban yang dapat ditahan oleh bearing jenis 6204 dan berapa lama usia bearing tersebut.

5. Berapa ukuran poros untuk pemasangan bearing 6305, dan bagaimana

		Shaft diameter [mm]						
Operating con-	Examples of mounting	ball	roller	spherical - roller	Toler- ance			
		taper - roller			4.700			
Point load of inne								
Small and ordi- nary load	rollers, pulleys	All diameters		g6				
Great and shock load	tightening pulleys	All diameters			h6			
Circumferencial load of inner ring, indeterminate way of loading								
Small and variable load	electrical instru- ments, fans	18 - 100	< 40		j6			
	cutting machines, conveyors	100 - 200	40 - 140		k6			
	common loading, cutting machines	< 18			j5			
NA a dia wa	turbines, electrical motors	18 - 100	< 40	< 40	k5			
Medium and high load	gear boxes, comb. engines	100 - 140	40 - 100	40 -65	m5			
l ingilizació	pumps	140 - 200	100 - 140	65 - 100	m6			
		200 - 280	140 - 200	100 - 140	n6			
Extremely high load,	bearing for axles of rail trucks		50 - 140	50 - 100	n6			
shocks	traction motors, rolling mills		140 - 500	100 - 500	p6			
	cutting machines	< 18			h5			
High mounting		18 - 100	< 40		j5			
precision		100 - 200	40 - 140		k5			
Only axial load		All diameters			j6			

small for C/P > 15

Note: Loading is C / P = 7 - 15

high for C/P < 7

prosedur pemasangan bearingnya?

BAB II BAUT DAN MUR (BOLT AND NUT)

A. Pendahuluan

Identifikasi Alat Pengikat (Fastener)

Untuk mengikat dua komponen menjadi satu berarti mereka digabungkan, dan sambungan tersebut dipaten atau dikunci bersamaan. Yang dapat memungkinkan hal ini adalah sebuah alat pengikat (fastener). Jika Anda mencoba menyebutkan semua jenisnya, Anda harus membuat sebuah daftar yang sangat panjang namun yang paling sering digunakan adalah alat pengikat (fastener) berdrat, yang meliputi baut, sekerup, studi, dan mur. Hal-hal tersebut sering dianggap sama sehingga orang tidak menyadari bahwa sebenarnya ada perbedaan. Yang berhubungan dengan benda-benda tersebut adalah washer, snap rings, pin sepi (Key) dan cotter

pin. Kesemuanya itu dirancang dengan banyak pertimbangan dan masing-masing dibuat untuk kegunaan tertentu. Pentingnya alat pengikat(fastener) akan dapat dimengerti ketika Anda membayangkan apa yang akan terjadi jika beberapa diantaranya rusak. Bahyangkan apa yang mungkun terjadi pada sebuah engine bila separuh dari baut-baut dan mur yang menahannya mulai patah atau kendur!

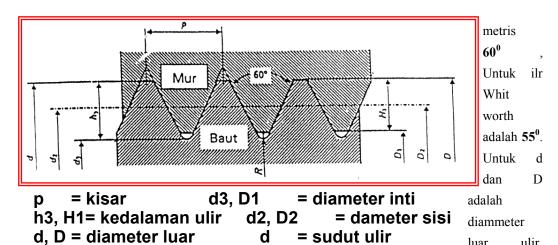
Baut dan mur pada suatu ilmu permesinan sangatlah dibutuhkan. Baik sebagai pengikat juga sebagai penggerak. Dalam pembahasan ini hanya akan dibahas tentang baut dan mur sebagai pengikat. Dalam prakteknya baut dan mur banyak di dapat di pasaran dan hanya tinggal memasang. Namun untuk memilih, memasang dan memelihara butuh suatu pengetahuan agar dapat berjalan dengan baik dan menghasilkan suatu prosedur kerja yang sesuai. Dalam kaitanya dengan pemeliharaan, baut dan mur hanya dengan pengontrolan kekencangannya secara periodik.

Untuk baut dan mur sangat erat hubunganya dengan *washer* (ring). Karena kebanyakan untuk pemasangan baut dan mur memerlukan ring. Fungsi ring sendiri adalah sebagai **peredam getaran** dan juga **pengunci** agar mur atau baut tidak lepas dalam waktu yang lama. Sehingga harus dapat memilih tentang material baut menempel, keadaan mesin, dan posisi pemasangan. Untuk itu dapat dipilih sesuai dengan jenis yang ada.

B. Pengetahuan Tentang Ulir

Ulir adalah seolah-suatu bentuk lilitan segitiga dari digulung pada sebuah silinder. Dalam pemakaian maka ulir selalu berpasangan antara ulir luar dan ulir dalam. Ulir sebagai pengikat pada umumnya mempunyai profil penampang segitiga sama kaki. Di bawah ini gambar dari profil ulir dan nama-nama pada bagian ulir yang penting.

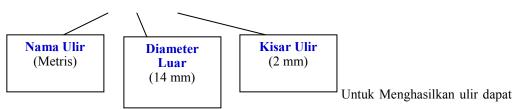
Ulir disebut tunggal atau haya satu jalan apabila hanya ada satu jalur yang melilit silinder. Ulir ganda, bila ada dua atau lebih jalur dalam. Kisar adalah jarak antar puncak pada satu lilitan dalam satu putaran. Dilihat dari arah putaranya ulir juga ada ulir kiri dan kanan. Ulir kanan apabila diputar ke kanan (searah jarum jam), maka bergerah arah maju, begitu sebaliknya arah kiri. Yang sering dipakai adalah yang ulir kanan Untuk sadut ulir pada ulir jenis


luar

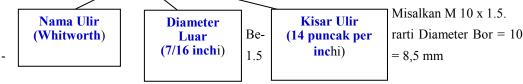
Pada

ulir.

saat



pembuatan baut, maka diameter luar harus dikurangi 0,2 - 0,3 agar saat pemasangan baut menjadi mudah tidak terlalu sesak.


Sehingga Jenis Baut atau Mur dengan nama

M 14 x 2

W 7/16 14

dengan cara mengulir di mesin bubut untuk ulir luar, atau dengan snei. Untuk ulir dalam dapat dengan mesin bubut atau dengan Tap tangan. Untuk di tap tangan harus dilakukan pengeboran dulu sesuai dengan lubang ulir. Dengan ukuran Diameter luar dikurangi dengan kisarnya.

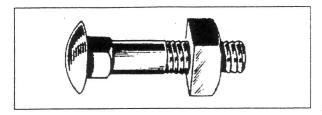
Gambar1 Tap dan snei tangan

Titik yang paling lemah pada sebuah rakitan adalah pada alat pengikat (fastenerr). Oleh sebab itu sangat penting bagi Anda mengetahui kekuatan alat pengikat (fastener) yang dibutuhkan. Selanjutnya bahwa alat pengikat (fastener) tersebut harus digunakan dengan benar,

dan untuk mur-mur serta baut-baut, yang merupakan alat pengikat mekanis yang paling umum, ukuran torsi yang tepat harus selalu digunakan.

Kekuatan alat pengikat (fastener) ditentukan oleh ketebalan, atau diameternya, dan bahan pembuatanya. Jika perlu menigkatkan kekuatan alat pengikat (fastener), Anda harus memperbesar ukuran, atau pilih yang sama ukuranya tetapi terbuat dari bahan yamg terbuat lebih kuat. Dibawah ini adalah sebuah diagram dari beberapa mur, baut, stud dan washer yang biasa digunakan, yang nantinya Anda akan berhubungan langsung.

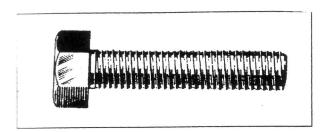
Anda harus mampu mengenal dan mengerti penggunaannya masing-masing.


Gambar 2 Jenis-jenis baut

Beberapa jenis pengikat (fastener) umum yang dipakai untuk melindungi komponen atau mengikatnya digambarkan di bawah ini.

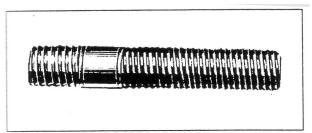
Baut (Bolt)

Biasanya tidak seluruhnya berulir dan mungkin dipasang dengan sebuah mur atau disekerupkan ke dalam lubang berulir pada sebuah komponen. Ada beberapa macam bentuk kepala baut.


Sekerup Pengikat (Set Screw)

Serupa dengan baut tetapi berdrat

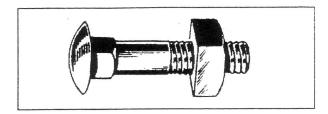
penuh. Biasanya lebih dikenal dengan nama sekerup berkepala (cap screw).



Stud (Baut

tanam)

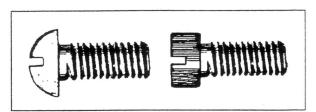
Stud tidak berkepala dan berdrat dari setiap ujungnya. Bisa terdiri dari drat yang berbeda pada masing-masing ujungnya untuk menyesuaikan dengan kegunaan *stud* tersebut.



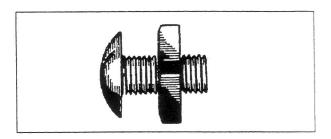
Baut

Berkepala Bulat (Cup Head

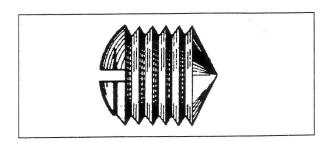
Bolt)


Baut berkepala bulat ini mempunyai sebaQian dari tangkainya yang berbentuk persegi untuk menahan baut, yang dapat digunakan untuk mengikat lantai kayu dari bodi truk atau untuk besi bemper

Metal Thread

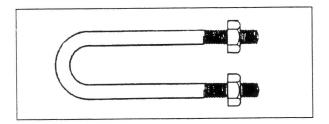

Sebuah sekerup berdrat penuh dengan diameter kecil yang dilengkapi dengan sebuah mur persegi atau heksagon. Kepalanya dapat berbentuk bulat atau "kepala keju" dan mempunyai sebuah alur untuk obeng. *Metal thread* digunakan untuk melekatkan komponen yang ringan atau penopang *(bracket)* yang kecil.

Gutter Bolt


Berdrat penuh dan sering kali digalvaniskan *(galvanised)* dengan sebuah kepala berbentuk kubah dan sebuah alur untuk obeng. Digunakan dengan sebuah mur untuk mengikat bahan yang ringan dan logam lembaran.

Grub Screw

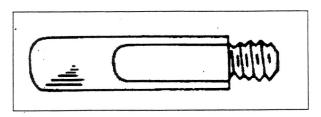
Sebuah sekerup tanpa kepala yang mungkin dilengkapi dengan alur untuk obeng atau sebuah lekukan untuk *Allen key*. Digunakan jika sekerup harus terpasang di bawah permukaan yang terbenam.



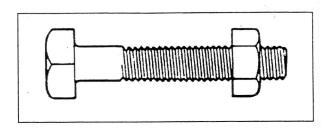
Self Tapping Screw

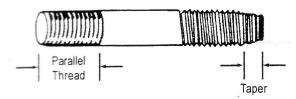
Sekerup ini -akan membentuk drat sendiri ke dalam logam yang tipis. Biasanya digunakan langsung ke dalam logam lembaran atau mur logam lembaran khusus dipasangkan pada komponen tersebut. Semua bentuk kepala sekerup bisa digunakan dengan *self tapping screws*.

Baut "U"

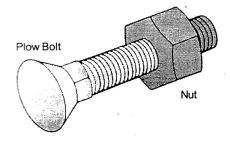

Digunakan untuk menahan pegas daun (*leaf springs*) padaporos sumbu kendaraan, dan pada sistem pembuangan/knalpot (*exhaust system*).

Cotter Pin


Pin baja runcing ini mempunyai sebuah bagian yang rata pada salah satu sisinya dan sebuah bagian kecil yang berulir pada bagian ujungnya yang kecil. Bagian runcingnya yang rata digunakan untuk menahan komponen seperti *kingpin* truk.Mur dan *washer* perlu dipasangkan pada *cotter pin* ini untuk menghindari adanya pergerakan.


Baut Batere (Battery Bolt)

Sebuah baut berkepala persegi, digalvaniskan dengan kuat, yang sering digunakan untuk mengencangkan terminal-terminal batere (accu) pada kutub (kepala) batere.

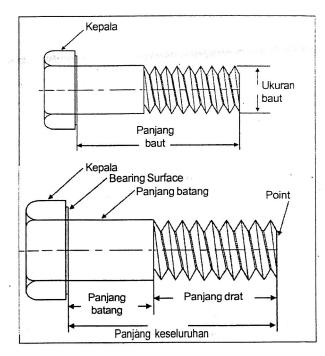

Taper Lock Stud

Menggunakan uliran khusus untuk menghasilkan sebuah drat yang beberapa ulir terakhirnya meruncing. *Stud* tersebut mempunyai uliran yang hampir sama runcingnya untuk membuat suatu *interference fit* pada saat stud tersebut dipasang. *Stud* ini digunakan pada aplikasi beban-beban berat pada peralatan yang bergerak.

Plow Bolt

Mempunyai kepala yang meruncing yang dapat masuk ke dalam lubang-lubang sekerup yang terbenam. Ketika dipasang, kepalanya terbenam dalam permukaan komponen tersebut. Baut-baut ini digunakan untuk memasang *blade* pada dozer dan *grader* yang membutuhkan hubungan dengan . tanah, agar tanah yang didorong bisa berputar/ bergulung den_ gan lancar pada bagian-bagian yang diikat.

Spesifikasi Baut



Mengingat kepentingan dan rancangan dari sebuah baut, maka perlu bagi Anda untuk dapat mengenali bagian-bagian dan fungsinya. Lihatlah pada diagram berikut dengan seksama dan pelajarilah nama-nama bagian baut tersebut.

Nama-nama Bagian Baut

Kepala (Head)

Kepala baut ini terbentuk pada satu ujung baut untuk menyediakan suatu permukaan untuk penahan baut (bearing surface) yang memungkinkan kepala baut bisa dipasang kunci/ alat agar baut dapat diputar.

Panjang Drat (Thread Length): panjang uliran baut.

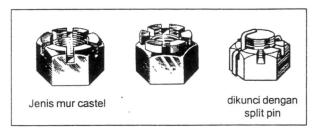
Panjang batang (Grip *Length*): panjang bagian yang tidak berdrat. Selain itu juga disebut tangkai *(shank)*.

Panjang Baut atau Panjang Tangkai (Bolt *LengthlShank Length*): panjang baut dari bearing surface sampai ujung drat.

Bearing Surface: bagian bawah kepala baut. Point: ujung baut tempat bermulanya drat.

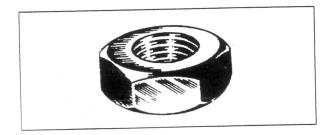
Mur dan Washer

Ada berbagai jenis mur. Sebagian besar adalah heksagonal (segi enam) tapi kadang-kadang juga mur berbentuk persegi.

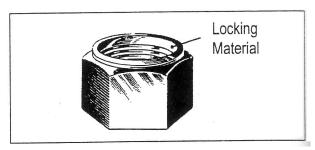

Mur Sederhana/Datar (Plain Nut)

Yang paling lazim adalah mur sederhana (plain nut). Bentuknya heksagonal dan halus pada kedua sisinya. Oleh sebab itu membutuhkan beberapa jenis washer atau mur pengunci untuk mencegah agar tidak kendur pada stud atau baut.

Mur Berbentuk Benteng (Castelated Nut)

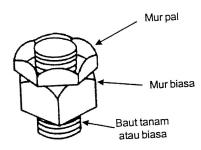


Sebuah pen belah (split pin) digunakan melalui sebuah lubang pada stud atau baut dan alur mur. Pasak belah tersebut harus berdiameter yang cukup untuk terpasang dengan mudah melalui lubang namun celahnya tidak berlebihan. Setiap kali memasang ulang mur tersebut, pen belahnya harus diganti dengan yang baru.

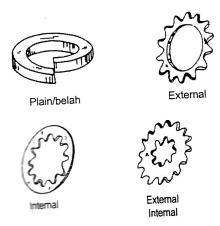

Mur Pengunci (Lock Nut)

Mur ini lebih tipis dari mur yang standar dan dipasang pada baut di atas mur sederhana (plain nut) yang normal. Pengencangan murpengunci akan sedikit meregangkan drat baut untuk mencegah kendumya mur (plain nut).

Self Locking Nut


Mur ini terdiri dari berbagai macam jeni~ Contoh yang umum, pada bagian ata menggunakanpotongan bahan fiber atau plasti untuk mencengkeram baut atau *stud* untu mencegah pergerakan.

Pal Nut

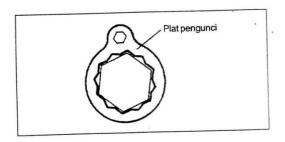

Pal nut adalah sebuah alat pengunci terbuat da pelat logam yang ditempa, yang dikencangk,-sedikit pada mur pengaman untuk mengunciny Jenis alat pengikat (fastener) logam padat yar serupa sering digunakan dengan self tappir, screws.


Lock Washer

Ring (washer) ini dikencangkan di bawah mi atau kepala baut untuk memberi efek pegas yar dapat menghindari kendurnya mur atau baut.

Kawat Pengunci (Locking Wire)

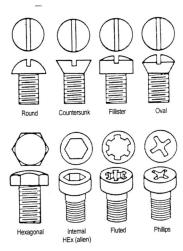
Dalam beberapa pemakaian, kepala baut atau sekerup dibor untuk memungkinkan kawat halus dijalin melalui lubang tersebut untuk mencegah kendurnya baut.



Plat Pengunci dan Ring Tag (Tag Washer)

Plat pengunci adalah alat yang dapat di gunahan kembali, yang diikatkan pada komponen sedemikian rupa untuk mencegah pergerakan baut atau mur.

Tag washer ditempatkan di bawah baut atau mur dan tag tersebut dibengkokkan sedemikian rupa hingga dapat mencegah pergerakan. Tag washer harus diganti bila sudah rusak.

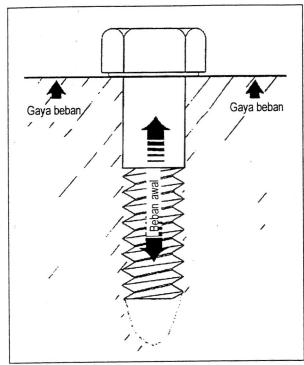

1.18 Sekerup

Berbagai jenis sekerup yang berbeda digunakan dalam pembuatan perlatan dan masing-masing mempunyai fungsi tertentu. Beberapa jenis diantaranya dan kegunaannya dijelaskan berikut.

Sekerup-sekerup yang digunakan untuk mengikat komponen-komponen dari logam mempunyai drat sampai ke bagian kepalanya. Kepalanya mempunyai berbagai bentuk, dengan bermacammacam jenis celah atau lubang untuk memutar sekerup. Diperlukan kunci atau obeng khusus sesuai bentuk kepala-kepala sekerup tertentu.

Baut-baut tertentu dengan kepala heksagonal (segi enam) juga mempunyai drat penuh sepanjang baut tersebut dan dikelompokkan dengan istilah "sekerup". Ini dapat dikatakan sebagai set screws pada lokasi-lokasi tertentu. Ujung-ujung sekerup tersebut juga dibuat dalam bentuk yang bervariasi untuk keperluankeperluan tertentu pula.

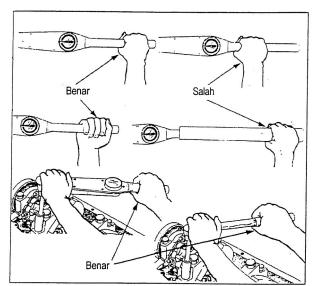
Sekerup *grub l grub screw* (kadang dikatakan sebagai *set screw*) digunakan untuk mengikat sebuah *pulley* atau *collar* pada sebuah poros *(shaft)*, sehingga. ujungnya berbentuk kerucut agar dapat masuk ke dalam lubang kecil, atau berbentuk tangkup/cangkir agar dapat memegang poros *(shaft)*.



Tension Wrench / Kunci Momen

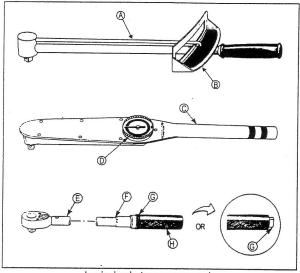
Sebuah *tension wrench*, kadang disebut "Torque Wrench" dipakai sebagai alat pembatas torsi untuk memutar mur baut sampai pada tingkat kekencangan yang telah ditentukan sebelumnya. Alat ini mencegah patahnya alat pengikat (lastener). Pada beberapa kasus tertentu, penting untuk menggunakan Torque Wrench untuk mencegah pembengkokan atau melarnya/ mulumya

komponen-komponen yang diikat oleh sejumlah alat pengikat *(fastener)* yang mungkin saj a pengencangannya tidak pas atau berlebihan - seperti cylinder head mesin *(engine)*, misalnya. Beberapa *torque wrench* mempunyai indikator yang dapat dibaca langsung yang harus diperhatikan pada saat menarik pegangannya sampai batas yang diinginkan. Jenis *iorque wrench* lainnya, Anda harus men_vetel sebelumnya sampai pada tingkat skala yang diinginkan dan menariknya sampai ada signal;' tanda, yang mungkin berupa- bunyi "klil:", lepasnya pin pelatuk, atau pelepasan otomatis dalam meknisme *wrench*.


Aksi gaya pada baut

1.21 Penggunaan Tension Wrench/Kunci Mamen

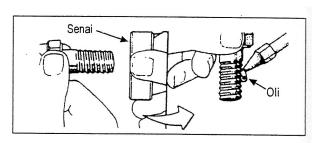
Untuk menggunakan Torque Wrench dengan benar, langkah-langkah berikut halus diperhatikan:


Pemberian gaya tekanan harus perlahan. Tekanan yang diberikan pada gagang Torque
Wrench harus stabil untuk mendapatkan nilai torsi yang akurat. Mengerahkan gaya yang
cepat atau kasar dapat mengakibatkan kesalahan besar pada hasil torsi.

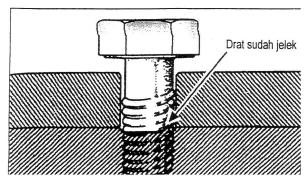
Cara menggunakan torque wrench

• Dengan *Deflecting Beam Torque Wrench (A)*, nilai torsi terbaca melalui skala (B) pada saat gaya diberikan pada gagangnya.

Jenis-jenis torque wrench


- Menggunakan *Dial Torque Wrench (C)*, jarum penunjuknya harus diputar dan ditempatkan pada angka 0 sebelum memberikan gaya pada gagang *torque wrench*. Kadang-kadang dial (jarum penunjuk) tersebut berada pada posisi yang sulit dibaca, sehingga bila *Torque Wrench* tersebut mempunyai dial yang bisa diputar
 - searah jarum jam atau berlawanan arah jarum jam, aturlah dial (jarum penunjuk) pada nilai yang telah ditentukan bukannya pada angka 0 dan kemudian beri gaya pada gagang. Indikator penunjuk akan bergerak dari nilai torsi yang ditentukan kembali ke 0.

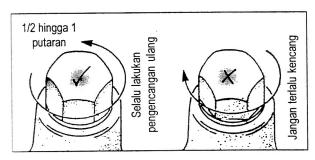
• MenggunakanAudible Click Torque Wrench (E), setel terlebih dahulu nilai torsi pada wrench dengan cara melepaskan kunci (G) pada gagang dan memutar "micrometer" barrel (H) searah atau berlawanan arah jaruni jam hingga pada ukuran torsi yang diinginkan (F). Kunci harus dikunci kembali setelah menyetel pengaturan angka.


1.22 Pelumasan Drat

Drat-drat alat pengikat *(fastener)* harus bersih dan tidak tertekuk, retak, bebas dari cat atau grease kental untuk mendapatkan nilai torsi yang benar. Sebelum memasang alat pengikat *(fastener)*, alat pengikat *(fastener)* tersebut harus diberi pelumas sedikit dan merata atau *anti-seize compound*. Untuk itu dapat menggunakan oli yang encer atau pelumas jenis grafit.

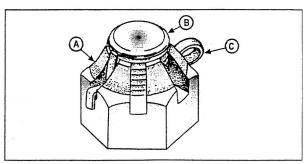
1.23 Kerusakan Drat

Stud, baut atau mur dengan drat yang rusak harus diganti atau membuat drat baru. Jika Anda merasa dapat memasang sebuah mur pada drat yang rusak atau baut atau stud yang rusak dalam sebuah lubang, Anda harus memperhitungkar. bukan hanya kerusakan yang mungkin timbu pada komponen yang sedang Anda rangkai tapi juga adanya kerusakan tambahan atau tidak bisa dikencangkan baut tersebut yang mungkin Anda hadapi,yang dapat menyebabkan kesalahan pengaturan torsi.



1.24 Pengencanagn Awal Alat Pengikat (fastener)

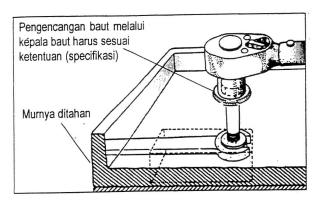
Suatu pemeriksaan yang akurat terhadap alat pengikat (fastener) yang telah dikencangkan untuk menentukan pakah telah dikencangkan sesuai dengan nilai torsi yang telah ditentukan tidak mungkin dilakukan. Sebuah alat alat pengikat (fastener) yang telah dikencangkan hingga nilai torsi tertenu membutuhkan kurang lebih 10% lebih banyak torsi dari yang semula telah diberikan untuk mengatasi hambatan / friksi, setelah itu baru memulai memutar alat pengikat (fastener) lagi. Jika ragu-ragu apakah alat pengikat (fastener) tersebut telah dikencangkan pada nilai torsi



yang benar atau belum, alat pengikat (fastener) tersebut harus dikencangkan kembali hingga nilai torsi yang benar.

Memasang Cotter Pin

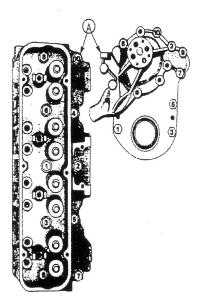
Ketika melurusakan *cotter Pin*, jangan kendurkan *castelated nut* (A) untuk memastikan kelurusan pada stud atau baut (B). Bila sebuah mur akan dipasangkan pada sebuah *stud* atau baut dengan memakai *cotter pin* (C) atau kawat pengaman, mur tersebut harus dikencangkan dengan niali torsi yang lebih rendah dari pada yang telah ditentukan, kemudian lubangya diluruskan dengan cara mengencangkan mur tersebut.



Menggunakan mur Castel

1.25 Pengencangan Baut dan Mur

Bila sebuah baut dikencangkan dari ujung kepalanya, beberapa putaran akan terserap untuk memutar baut didalam lubang. Jumlah torsi yang diserap berbeda, tergantung dari ruang bebas dalam lubang tersebut dan kelurusan komponen-komponennya. Untuk itu, perlu diberi nilai torsi untuk mengencangkan baut-baut pad aujung mur. Bila terjadi ujung mur pada baut tidak bisa terjangkau oleh *torque wrench*, sedangkan kepala baut harus diputar, baut tersebut harus dikencangkan lebih tinggi dari nilai torsi yang telah ditentukan sementara untuk menahan ujung mur agar mur tidak berputar bisa menggunakan jenis kunci tertentu untuk menahannya.

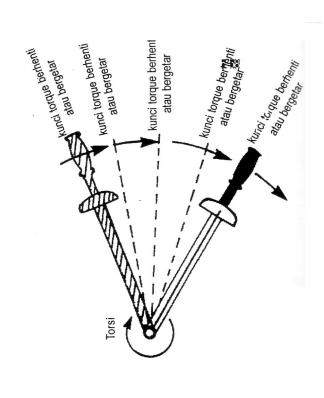


1.26 Urutan Pengencangan

Untuk mengencangkan serangkaian alat pengikat *(fastener)*, mereka harus dikencangkan dengan cara tertentu. Ini akan memberikan tekanan yang seimbang pada permukaan-permukaan yang berpasangan dari komponen yang sedang ditorsi. Jangan mengencangkan dua permukaan yang berpasangan (misalnya cylinder head) denagn mengikuti pola arah jarum jam atau berlawanan arah jarum jam.

Cataran: Harus selalu memeriksa dan mengikuti petunjuk spesifikasi dari pabrik.

1.27 Prosedur Pengencangan


Semua alat pengikat *(fastener)* harus ditempatkan sampai mereka bersentuhan dengan permukaan yang ditahannya pertama kali, lalu diputar hingga torsi yang diinginkan secara bertahap mulai dari 20%, 40%, 60%, 80% hingga torsi penuh. (Ini berarti persentase dari keseluruhan nilai torsi yang diinginkan). Sebagai contoh, jika nilai torsi yang diinginkan adalah 250 inci-pon, maka 20% dari 250 inci-pon adalah 50 inci-pon. 60% dari 250 inci-pon adalah 150 inci-pon, dan seterusnya hingga tercapai nilai torsi penuh.

Mekanika Dan Elemen Mesin

Kadang terjadi macet atau dol ketika sedang mengencangkan sebuah alat pengikat *(fastener)*. Hal ini ditandai denagn suatu efek letupan pada saat tahap-tahap terakhir pengencangan. Ketika terjadi dol, kendurkan baut atau mur tersebut dan kencangkan kembali dengan gaya memutar stabil pada gagang kunci tersebut. <u>Bacalah ukuran torsi sambil memutar kunci momen</u>

Unified Inch Bolt and Cap Screw Torque Values

SAE Grade And Head Marking	No Mark	1 or 2 ^b	5 5.1 5.2	8 8.2
SAE Grade And Nut Mark- ings	No Mark	2	5 5	

Siz e		Gra	de 1			Gra	de 2		Gr	Grade 5, 5.1, or 5.2		Grade 8 or 8.2				
,		cated	Dı	ry ^a		cated	Di	ry ^a	Lubi	cated	Dı	'y ^a		cated	Dı	ry ^a
·	N- m	Lb -ft	N- m	Lb -ft	N- m	Lb -ft	N- m	Lb -ft	N- m	Lb -ft	N- m	Lb -ft	N- m	Lb -ft	N- m	Lb-ft
1/4 5/1 6 3/8 7/1 6 9/2 9/1 6 5/8 1 1- 1/8 1- 1/8 1- 1/2 1/2	3.7 7.7 14 22 33 48 67 120 190 290 470 570 750 0	2.8 5.5 10 16 25 36 87 140 210 300 425 550 725	4.7 10 17 28 42 60 85 150 240 360 510 725 950 125 0	3.5 7 13 20 31 45 62 110 175 270 375 530 700 925	6 12 22 35 53 75 105 190 290 470 570 750 990	4.5 9 16 26 39 56 78 140 140 210 300 425 550 725	7.5 15 27 44 67 95 135 240 240 510 725 950 125 0	5.5 11 20 32 50 70 100 175 175 270 375 530 700 930	9.5 20 35 55 85 125 170 300 490 725 900 130 0 170 0 225 0	7 15 26 41 63 90 12 5 22 5 36 0 54 0 67 5 95 0 12 5 0 12 5 0 12 5 0 15 16 16 16 16 16 16 16 16 16 16 16 16 16	12 25 44 70 110 155 375 625 925 915 0 165 0 215 0 285 0	9 18 33 52 80 115 160 280 450 675 850 120 0 155 0 210 0	13. 5 28 50 80 120 175 215 425 700 105 0 205 0 270 0 360 0	10 21 36 58 90 130 500 750 107 5 150 0 200 0 265 0	10 35 63 100 150 225 550 875 130 0 185 0 0 340 0 452 0	12.5 26 46 75 115 160 225 400 650 975 1350 1950 2550 3350

Jangan menggunakan nilai-nilai ini apabila sudah ditetapkan nilai torsi atau prosedur pengencangan yang lain untuk aplikasi tertentu.

١

Mekanika Dan Elemen Mesin

Nilai torsi yang ada dalam daftar ini hanyalah untuk pemakain yang umum saja.

- a. "Lubricated" artinya dilapisi denagn pelumas seperti oli mesin, atau alat pengikat (fastener) dengan dilapisi fosfat dan oli. " Dry" artinya polos atau berlapis seng tanpa adanya pelumasan.
- b. Grade 2 berlaku untuk cap screw yang hexagonal (bukan baut hexagonal) yang panjang samapi denagn 152 mm (6 inci). Grade 1 berlaku untuk cap screw yang hexagonal, yang panjangnya lebih dari 152 mm (inci), dan untuk baut-baut dan xekerup jenis lain yang panjangnya berbeda;

Alat pengikat (fastener) harus diganti dengan alat pengikat (fastener) yang grade-nya sama atau lebih tinggi. Jika menggunakan alat pengikat (fastener) dengan grade yang lebih tinggi, harus dikencangkan dengan kekuatan aslinya.

Pastikan bahwa drat alat pengikat (fastener) tersebut bersih dan Anda memulai pemasangan dengan benar. Hal ini akan mencegah kemacetan pada saat pengencangan.

Kencangkan mur pengunci penyisip plastik atau mur crimped steel-type hingga kira-kira 50% dari nilai torsi kering yang ditunjukkan dalam daftar, lakukan padamur tersebut, bukan pada kepala baut. Kencangkan mur pengunci bergerigi atau jenis gergaji hingga nilai torsi penuh.

Alat pengikat (fastener) harus diganti dengan yang berasal dari kelas yang sama atau lebih tinggi. Apabila menggunakan alat pengikat (fastener) dari kelas yang lebiih tinggi, hanya boleh dikencangkan hingga kekuatan aslinya.

a. "Lubricated" artinya dilapisi denagn pelumas seperti oli mesin, atau alat pengikat (fastener) dengan dilapisi fosfat dan oli. " Dry" artinya polos atau berlapis seng tanpa adanya pelumasan.

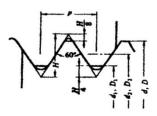
Pastikan bahwa drat alat pengikat (fastener) tersebut kering dan Anda memulai pemasangan dengan benar. Hal ini akan mencegah kemacetan pada saat pengencangan.

Kencangkan mur pengunci penyisip plastik atau mur crimped steel-type hingga kira-kira 50% dari nilai torsi kering yang ditunjukkan dalam daftar, lakukan padamur tersebut, bukan pada kepala baut. Kencangkan mur pengunci bergerigi atau jenis gergaji hingga nilai torsi penuh.

C. Jenis - Jenis Bolt & Nut

Ulir digolongkan menjadi bentuk profil penampangnya yaitu: ulir segitiga, persegi, trapesium, gigi gergaji, bulat. Bentuk persegi, gigi gergaji dan trapesium, pada umumnya dipakai untuk

penggerak atau penerus daya, sedangkan ulir bulat dipakai untuk menghindari kemacetan karena kotoran. Sedangkan ulir **segitiga untuk pengencang**.


Ulir segitiga diklasifikasikan juga menurut jarak baginya dalam ukuran metris atau inchi, juga pada ukuran kisar ada yang halus dan kasar, sebagai berikut:

- Ulir kasar metris
- Ulir halus metris
- Ulir Whit worth.
- Ulir BSF

Untuk selanjutnya ukuran dari ulirdapat dilihat pada tabel, sehingga akan memudahkan pada pemilihan ukuran.

Ulir Metris

$$H = 0.866025p, d_2 = d - 0.64951p, D = d$$

$$\begin{array}{l} H1 = 0{,}541266p, \ d_1 = d-1{,}082532p, \ D_2 = d_2, \\ D1 = d_1 \end{array}$$

Garis tebal menyatakan profil patokan dari ulir

Ulir Dalam

Ulir Luar

Ulir Metris (Satuan: mm)

Ulir Metris

Tabel. Ukuran standar ulir kasar metris (JIS B 0205).

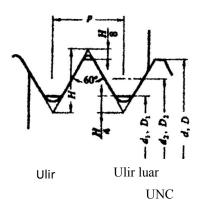
	Ulir (1)					Ulir dalam		
			Jarak	Tinggi kaitan	Diameter luar D	Diameter efektif D ₂	Diameter dalam D ₁	
1	2	3	bagi p	H_1		Ulir luar		
					Diameter luar D	Diameter efektif D ₂	Diameter inti D ₁	
M 0,25 M 0,3	M 0,35		0,075 0,08 0,09	0,041 0,043 0,049	0,250 0,300 0,350	0,201 0,248 0,292	0,169 0,213 0,253	
M 0,4 M 0,5	M 0,45		0,1 0,1 0,125	0,054 0,054 0,068	0,400 0,450 0,500	0,335 0,385 0,419	0,292 0,342 0,365	
M 0,6	M 0,55 M 0,7		0,125 0,15 0,175	0,068 0,081 0,095	0,550 0,600 0,700	0,469 0,503 0,586	0,415 0,438 0,511	
M 0,8 M 1	M 0,9		0,2 0,225 0,25	0,108 0,122 0,135	0,800 0,900 1,000	0,670 0,754 0,838	0,583 0,656 0,729	
M 1,2 M 1,4 M1,7			0,25 0,3 0,35	0,135 0,162 0,189	1,200 1,400 1,700	1,038 1,205 1,473	0,929 1,075 1,321	
M2 M 2,3 M 2,6			0,4 0,4 0,45	0,217 0,217 0,244	2,000 2,300 2,600	1,740 2,040 2,308	1,567 1,867 2,113	
M 3x0,5	M 3,5		0,5 0,6 0,6	0,271 0,325 0,325	3,000 3,000 3,500	2,675 2,610 3,110	2,459 2,350 2,850	
M 4x0,5	M 4,5		0,7 0,75 0,75	0,379 0,406 0,406	4,000 4,000 4,500	3,515 3,513 4,013	3,242 3,188 3,688	
M 5x0,8			0,8 0,9 0,9	0,433 0,487 0,487	5,000 5,000 5,500	4,480 4,415 4,915	4,134 4,026 4,526	

Catatan : (1) Kolom 1 merupakan pilihan utama. Kolom 2 atau kolom 3 hanya dipilih jika terpaksa.

Ulir UNC

Ulir Dalam

	Ulir (1)					Ulir dalam	
			Jarak	Tinggi	Diameter luar D	Diameter efek- tif D2	Diameter dalam D1
1	2	3	bagi p	kaitan H1		Ulir luar	
					Diameter luar d	Diameter efek- tif d2	Diameter inti d1
M 6 M 8		M 7	1 1 1,25	0,541 0,541 0,677	6,000 7,000 8,000	5,350 6,350 7,188	4,917 5,917 6,647
M 10		M 9 M 11	1,25 1,5 1,5	0,677 0,812 0,812	9,000 10,000 11,000	8,188 9,026 10,026	7,647 8,376 9,376
M 12 M 16	M 14		1,75 2 2	0,947 1,083 1,083	12,000 14,000 16,000	10,863 12,701 14,701	10,106 11,835 13,835
M 20	M 18 M 22		2,5 2,5 2,5	1,353 1,353 1,353	18,000 20,000 22,000	16,376 18,376 20,376	15,294 17,294 19,294
M 24 M 30	M 27		3 3 3,5	1,624 1,624 1,894	24,000 27,000 30,000	22,051 25,051 27,727	20,752 23,752 26,211
M 36	M 33 M 39		3,5 4 4	1,894 2,165 2,165	33,000 36,000 39,000	30,727 34,402 36,402	29,211 31,670 34,670
M 42 M 48	M 45		4,5 4,5 5	2,436 2,436 2,706	42,000 45,000 48,000	39,077 42,077 44,752	37,129 40,129 42,587
M 56	M 52 M 60		5 5,5 5,5	2,706 2,977 2,977	52,000 56,000 60,000	48,752 52,248 56,428	46,587 50,046 54,046
M 64	M 68		6 6	3,248 3,248	64,000 68,000	60,103 64,103	57,505 61,505



Ulir Metris Halus

M D:	T 1	NG 11 4	Nom. Diamt.	Lead	Min. diamtr.
Nom. Diamt.	Lead	Min. diamtr.	d = D	P	
d = D	P		(mm)	(mm)	(mm)
(mm)	(mm)	(mm)			
M 8	1	6,773	M 30	3	26,319
M 10	1	8,773	M 36	3	32,319
M 12	1	10,773	M 42	3	38,319
M 16	1	14,773	M 48	3	44,319
M 20	1	18,773	M 56	3	52,319
M 24	1	22,773	M 64	3	60,319
M 30	1	28,773	M 72	3	68,319
M 12	1,5	10,16	M 80	3	76,319
M 16	1,5	14,16	M 100	3	96,319
M 20	1,5	18,16	M 125	3	121,319
M 24	1,5	22,16	M 140	3	136,319
M 30	1,5	28,16	M 160	3	156,319
M 36	1,5	34,16	M 42	4	37,093
M 42	1,5	40,16	M 48	4	43,093
M 48	1,5	46,16	M 56	4	51,093
M 56	1,5	54,16	M 64	4	59,093
M 64	1,5	62,16	M 72	4	67,093
M 72	1,5	70,16	M 80	4	75,093
M 80	1,5	78,16	M 90	4	85,093
M 20	2	17,546	M 100	4	95,093
M 24	2	21,546	M 125	4	120,093
M 30	2	27,546	M 140	4	135,093
M 36	2	33,546	M 160	4	155,093
M 42	2	39,546	M 180	4	175,093
M 48	2	45,546	M 72	6	64,639
M 56	2	53,546	M 80	6	72,639
M 64	2	61,546	M 90	6	82,639
M 72	2	69,546	M 100	6	92,639
M 80	2	77,546	M 110	6	102,639
M 90	2	87,546	M 125	6	117,639
M 100	2	97,546	M 140	6	132,639

Garis tebal merupakan profil patokan dari ulir.

$$p = \frac{25,4}{n} d = (d) \times 25,4 D = d$$

$$H = \frac{0,566025}{n} \times 25,4 d_2 = \left(d - \frac{0,649519}{n}\right) \times 25,4 D_2 = d_2$$

$$H_1 = \frac{0,541266}{n} \times 25,4 d_1 = \left(d - \frac{1,082532}{n}\right) \times 25,4 D_1 = d_1$$

UNF Threads $Top\ Angle\ 60^0$

<u> </u>						Ulir dalam	
Ulir ⁽²	2)	Jumlah Jarak ulir (tiap bagi 25,4 mm) p		Tingi kaitan H ₁	Daimeter luar D	Diameter efektif D ₂ Ulir Dalam	Diameter dalam D ₁
1	2				Daimeter luar d	Diameter efektif d ₂	Diameter inti d ₁
No. 2-56 UNC	No. 1-64 UNC No. 3-48 UNC	64 56 48	O,3969 0,4536 0,5292	0,215 0,246 0,286	1,854 2,184 2,515	1,598 1,890 2,172	1,425 1,694 1,941
No. 4-40 UNC No. 5-40 UNC No. 6-32 UNC		40 40 32	0,6350 0,6350 0,7938	0,344 0,344 0,430	2,845 3,175 3,505	2,433 2,764 2,990	2,156 2,487 2,647
No. 8-32 UNC No. 10-42 UNC	No. 12-24 UNC	32 24 24	0,7983 1,0383 1,0583	0,430 0,573 0,573	4,166 4,826 5,486	3,650 4,138 4,798	3,307 3,680 4,431
1/4-20 UNC 5/16-18 UNC 3/8-16 UNC		20 18 16	1,2700 1,6111 1,5875	0,687 0,764 0,895	6,350 7,938 9,252	5,524 7,021 8,494	4,976 6,411 7,805
7/16-14 UNC ½ -13 UNC 9/16–12 UNC		14 13 12	1,8143 1,9538 2,1167	0,982 1,058 1,146	11,112 12,700 14,288	9,934 11,430 12,913	9,149 10,584 11,996
1-8 UNC 1(1/8)-7 UNC 1(1/4)-7 UNC		11 10 9	2,309 1 2,540 0 2,822 2	1,250 1,375 1,528	15,875 19,050 22,225	14,376 17,399 20,391	13,376 16,299 19,169
1(3/8)-6 UNC 1(3/8)-6 UNC 1(3/4)-5 UNC		8 7 7	3,175 0 3,628 6 3,628 6	1,719 1,964 1,964	25,400 28,575 31,570	23,338 26,218 29,393	21,963 24,648 27,823
1(3/8)-6 UNC 1(3/8)-6 UNC 1(3/4)-5 UNC		6 6 5	4,233 3 4,233 3 5,080 0	2,291 2,291 2,750	34,925 38,100 44,450	32,174 35,349 41,131	30,343 33,518 38,951

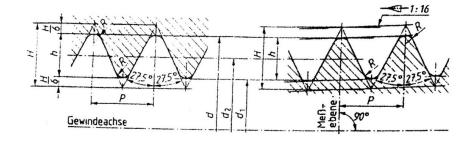
2.4(3/2) UNC 2(1/4)-4(1/2) UNC 2(1/2) 4 UNC	4(1/2) 4(1/2) 4	5,644 4 5,644 4 6,350 0	3,055 3,055 3,437	50,800 57,150 63,500	47,135 53,485 59,375	41,689 51,039 56,627
2(3/4)-4 UNC 3.4 UNC 3(1/4)-4 UNC	4 4 4	6,350 0 6,350 0 6,350 0	3,437 3,437 3,437	69,850 76,200 82,550	62,725 72,075 78,425	62,977 69,327 75,677
3(1/2) 4 UNC 3(3/4)4 UNC 4-4 UNC	4 4 4	6,350 0 6,350 0 6,350 0	3,437 3,437 3,437	88,900 95,250 101,600	84,775 91,125 97,475	82,027 88,377 94,727

Nominal Di-	Nominal Di-	Minor Diam-	Throads
ameter	ameter	eter	Threads per inch
inch	mm	mm	per men
114	6.350	5.2375	28
5116	7.938	6.6396	24
318	9.525	8.2271	24
7116	11.113	9.5555	20
112	12.700	11.1430	20
9116	14.288	12.5552	18
518	15.875	14.1427	18
314	19.050	17.1018	16
718	22.225	19.9999	14
1	25.400	22.8041	12
1 1/8	28.575	25.9791	12
1 1/4	31.750	29.1541	12
1 3/8	34.925	32.3291	12
1 1/2	38.100	35.5041	12

BSF Threads Top Angle 55⁰

Whitworth

Threads



0 / 751		100	0.0	0.0	5 0	- 60	
% T1	nread	100	90	80	70	60	50
3/16	32 TPI	3,75	3,85	3,95	4,05	4,15	4,25
7/32	28	4,39	4,51	4,63	4,75	4,87	4,99
1/4	26	5,10	5,23	5,36	5,49	5,62	5,75
9/32	26	5,89	6,02	6,15	6,28	6,41	6,54
5/16	22	6,46	6,61	6,76	6,91	7,06	7,21
3/8	20	7,90	8,06	8,22	8,38	8,54	8,70
7/16	18	9,30	9,48	9,66	9,84	10,02	10,20
1/2	16	10,67	10,87	11,07	11,27	11,47	11,67
9/16	16	12,26	12,46	12,66	12,86	13,06	13,27
5/8	14	13,55	13,78	14,01	14,24	14,47	14,71
11/16	14	15,14	15,37	15,60	15,83	16,06	16,30
3/4	12	16,34	16,61	16,88	17,15	17,42	17,69
13/16	12	17,92	18,19	18,46	18,73	19,00	19,27
7/8	11	19,27	19,57	19,87	20,17	20,47	20,77
1	10	22,15	22,48	22,81	23,14	23,45	23,80
1 1/8	9	24,96	25,37	25,68	26,04	26,40	26,76
13/8	8	30,04	31,27	31,68	32,09	32,50	32,91
1 1/2	8	34,04	34,45	34,86	35,27	35,68	36,09
1 1/4	9	28,14	28,50	28,86	29,22	29,58	29,94
1 5/8	8	37,21	37,62	38,03	38,44	38,85	39,26
1 3/4	7	39,80	40,27	40,74	41,21	41,68	42,12
2	7	46,15	46,62	47,09	47,56	48,03	48,50
2 1/4	6	51,73	52,27	52,81	53,35	53,89	54,43
2 1/2	6	58,08	58,62	59,16	59,70	60,24	60,78
3	5	69,69	70,34	70,99	71,64	72,29	72,94
3 1/2	4,5	81,67	82,39	83,11	83,83	84,55	85,27
4	4,5	94,37	95,09	95,81	95,53	97,25	97,97
4 1/4	4	99,62	100,6	101,4 4	102,2 5	103,0 6	103,87

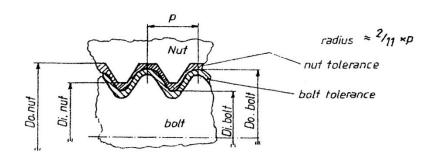
bolt

BSF Threads Top Angle 55⁰

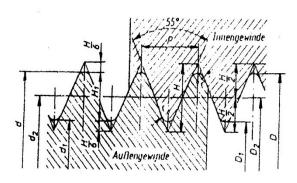
H = 0,960491 P h = 0,640327 P
$$R = 0,137329 P p = \frac{25,4}{z}$$

$$H = 0.960237 P h = 0.640327 P$$

25,4

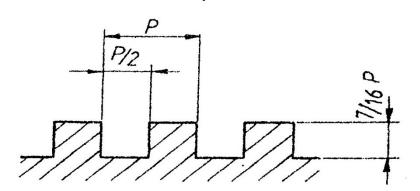

$$R = 0.137278 P p =$$

			Gewinder	nahe		
DIN 259 TI Kurzzeichen ¹⁾	Au β endurchmesser $d = D$	Flanken- durchmes- ser $d_2 = D_2$		Steigung P	Gangzahl Auf I Zoll z	Gewinde- tiefe H ₁
- R1/8 R1/4 R3/8	7,723 9,728 13,157 16,662	7,142 9,147 12,301 15,806	6,561 8,566 11,445 14,950	0,907 0,907 1,337	28 28 19	0,581 0,581 0,856 0,856
R1/2	20,955	19,793	18,631	1,814	14	1,162
(R5/8)	22,911	21,749	20,587	1,814	14	1,162
R3/4	26,441	25,279	24,117	1,814	14	1,162
(R7/8)	30,201	29,039	27,877	1,814	14	1,162
R1	33,249	31,770	30,291	2,309	11	1,479
(R1 1/8)	37,897	36,418	34,939	2,309	11	1,479
R1 1/4	41,910	40,431	38,952	2,309	11	1,479
(R1 3/8)	44,323	42,844	41,365	2,309	11	1,479
R1 1/2	47,803	46,324	44,845	2,309	11	1,479
(R1 ³ / ₄)	53,746	52,267	50,788	2,309	11	1,479
R2	59,614	58,135	56,656	2,309	11	1,479
(R2 1/4)	65,710	64,231	62,752	2,309	11	1,479
R2 ½	75,184	73,705	72,226	2,309	11	1,479
(R2 ¾)	81,534	80,055	78,576	2,309	11	1,479
R3	87,884	86,405	84,926	2,309	11	1,479
(R3 ½)	93,980	92,501	91,022	2,309	11	1,479
R3 ½	100,330	98,851	97,372	2,309	11	1,479
(R3 ³ / ₄)	106,680	105,201	103,722	2,309	11	1,479
R4	113,030	111,551	110,072	2,309	11	1,479
(R4 ¹ / ₂)	125,730	124,251	122,772	2,309	11	1,479
R5	138,430	136,951	135,472	2,309	11	1,479
(R5 ½)	151,130	149,651	148,172	2,309	11	1,479
R6	163,830	162,351	160,872	2,309	11	1,479
98						


British Association Threads

Screw Profile

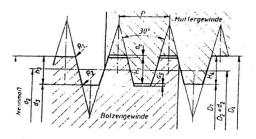
No. B.A.	Pitch mm	Pitch inch	Height of thread (mm)	thread (mm) Full Ø nut Core Ø (bo		Core Ø (bolt/ nut) mm
			, ,	mm	inch	
0	1,00	0,0393	0,6	6,0	0,236	4,8
1	0,9	0,0354	0,54	5,3	0,208	4,22
2	0,81	0,0318	0,485	4,7	0,185	3,73
3	0,73	0,0287	0,44	4,1	0,161	3,22
4	0,66	0,0259	0,395	3,6	0,142	2,81
5	0,59	0,0232	0,355	3,2	0,126	2,49
6	0,53	0,0209	0,32	2,8	0,110	2,16
7	0,48	0,0189	0,29	2,5	0,098	1,92
8	0,43	0,0169	0,26	2,2	0,087	1,68
9	0,39	0,0153	0,235	1,9	0,074	1,43
10	0,35	0,0138	0,21	1,7	0,067	1,28
11	0,31	0,0122	0,185	1,5	0,059	1,13
12	0,28	0,0110	0.17	1,3	0,051	0,96
13	0,25	0,0984	0,15	1,2	0,047	0,90
14	0,23	0,0906	0,14	1,0	0,039	0,72


 $P = \frac{25.4}{z} \qquad \begin{array}{c} r = 0.137329 \ P \\ H = 0.960491 \ P \\ H_1 = 0.640327 \ P \end{array}$

Nominal Diameter inch	Nominal Diameter mm	Minor Diameter mm	Threads per inch
1/4	6.3500	4.7244	20
5/16	7.9375	6.1287	18
3/8	9.5250	7.4930	16
7/16	11.1125	8.7909	14
1/2	12.7000	9.9873	12
9/16	14.2875	11.5748	12
5/8	15.8750	12.9184	11
11/16	17.4625	14.5059	11
3/4	19.0500	15.7988	10
13/16	20.6375	17.3863	10
7/8	22.2250	18.6131	9
1	25.4000	21.3360	8
1 1/8	28.5750	23.9268	7
1 1/4	31.7500	27.1018	7
1 3/8	34.9250	29.5096	6
1 1/2	38.1000	32.6796	6
1 5/8	41.2750	34.7671	5
1 3/4	44.4500	37.9425	5
2	50.8000	43.5712	4 1/2
2 1/4	57.1500	49.0169	4
2 ½	63.5000	55.3669	4
2 3/4	69.8500	60.5536	3 ½
3	76.2000	66.9036	3 ½
3 1/4	82.5500	72.5424	3 1/4
3 ½	88.9000	78.8924	3 1/4
3 3/4	95.2500	84.4093	3

4	101.6000	90.7593	3
4 1/2	114.3000	102.9868	2 7/8
5	127.0000	115.1738	2 3/4
5 ½	139.7000	127.3099	2 5/8

Standard Square Threads



Nominal Diam- eter	Nominal Diame- ter	Minor Diameter	Threads Per inch
inch	mm	mm	Pel Illeli
1/4	6.3500	4.1275	10
5/16	7.9375	5.4686	9
3/8	9.5250	6.7513	8
7/16	11.1125	7.9375	7
1/2	12.7000	9.2862	6 ½
9/16	14.2875	10.5842	6
5/8	15.8750	11.8516	5 ½
11/16	17.4625	13.0175	5
3/4	19.0500	14.6050	5
13/16	20.6375	15.6997	4 1/2
7/8	22.2250	17.2872	4 1/2
15/16	25.4000	18.2575	4
1	28.5750	19.8450	4
1 1/8	31.7500	22.2250	3 ½
1 1/4	34.9250	25.4000	3 ½
1 3/8	38.1000	27.5184	3
1 1/2	41.2750	30.6934	3
1 5/8	44.4500	33.1978	2 3/4
1 3/4	50.8000	35.5600	2 ½
1 1/8	57.1500	38.7350	2 ½
2	63.5000	40.9448	2 1/4
2 1/4	69.8500	47.2948	2 1/4
2 ½	76.2000	52.4002	2
2 3/4	82.5500	58.7502	2
3	88.9000	63.5000	1 3/4
3 1/4	95.2500	69.8500	1 3/4
3 ½	101.6000	75.2348	1 5/8
3 3/4	6.3500	80.4672	1 ½
4	7.9375	86.8172	1 ½

Trapezium Standard Threads

Ukuran utama in mm

 $R_1 = max. \ 0, 5 \cdot a_C$ $R_2 = max. \ a_C$

Kisar P	1, 5	2	3	4	5	6	7	8	9	10	12	1 4	1 6	1 8	2 0
Dalam Ulir H ₄ = h ₂	0, 9	1, 25	1,7 5	2,2 5	2,7 5	3, 5	4	4, 5	5	5, 5	6, 5	8	9	1 0	1
Spiling a _c	0, 15	0, 25	0,2 5	0,2 5	0,2 5	0, 5	0, 5	0, 5	0, 5	0, 5	0, 5	1	1	1	1

Diametere Luar Ulir	Kisar ⁾	Diameter efektif ³⁾ $d_2 = D_2$	Diameter inti ³⁾ d ₃	Tinggi Ulir H ₁ = 0,5.P	Luas Penam- pang A ₃ in mm ²
8	1,5	7,25	6,2	0,75	30,2
10	(1,5) 2	9	7,5	1	44,2
12	(2) 3	10.5	8,5	1,5	56,7
16	(2) 4	14	11,5	2	104
20	(2) 4	18	15,5	2	189
24	(3) 5 (8)	21,5	18,5	2,5	269
28	(3) 5 (8)	25,5	22,5	2,5	398
32	(3) 6 (10)	29	25	3	491
36	(3) 6 (10)	33	29	3	661
40	(3) 7 (10)	36,5	32	3,5	804
44	(3) 7 (12)	40.5	36	3,5	1018
48	(3) 8 (12)	44	39	4	1195
52	(3) 8 (12)	48	43	4	1452
60	(3) 9 (14)	55,5	50	4,5	1963
65 ¹⁾	(4) 10 (16)	60	54	5	2290
70	(4) 10 (16)	65	59	5	2734
75 ¹⁾	(4) 10 (16)	70	64	5	3217
80	(4) 10 (16)	75	69	5	3739
85 ¹⁾	(4) 12 (18)	79	72	6	4071
90	(4) 12 (18)	84	77	6	4656
95 ¹⁾	(4) 12 (18)	89	82	6	5281
100	(4) 12 (20)	94	87	6	5945
110 ¹⁾	(4) 12 (20)	104	97	6	7390
120	(4) 14 (22)	113	104	7	8495

Drill Diameter for Threads

						T		1		1	T
M	P		d	MF	P		d	MF	P		d
M 1 M 1,1 M 1,2	0,25 0,25 0,25	0,785 0,885 0,985	0,75 0,85 0,95	M 2,5 M 3 x M 3,5	0,35	2,221 2,271 3,221	2,15 2,65 3,15		1 1,5 2	24,153 23,676 23,210	24 23,5 23
M 1,4 M 1,6 M 1,7	0,3 0,35 0,35	1,142 1,121 1,346	1,1 1,25 1,3	M 4 x M 4,5 M 5 x	x 0,5	3,599 4,099 4,599	3,5 4 4,5			24,676 26,153 25,670 25,210	24,5 26 25,5 25
M 1,8 M 2 M 2,2	0,35 0,4 0,45	1,521 1,679 1,838	1,45 1,6 1,75	M 5,5 M 6 x M 7 x	0,75	5,009 5,378 6,378	5 5,25 6,25		1 1,5 2	27,153 26,676 26,210	27 26,5 26
M 2,3 M 2,5 M 2,6	0,4 0,45 0,45	1,920 2,138 2,176	1,9 2,05 2,1	M 8 x x M 9 x	1 0,75	7,378 7,153 8,378 8,153	7,25 7 8,25 8		1,5 2	29,153 28,676 28,210	29 28,5 28
M 3 M 3,5 M 4	0,5 0,6 0,7	2,599 3,010 3,422	2,5 2,9 3,3		x 0,75 x 1 x 1,25	9,378 9,153 8,912	9,25 9 8,75	M 33 x	1,5 2	30,676 30,210 31,676 31,210 30,252	30,5 30 31,5 31 30
M 4,5 M 5 M6	0,75 0,8 1	3,878 4,334 5,153	3,7 4,2 5	M 12 x	1	10,378 10,153 11,153 10,912 10,676	10,25 10 11 10,75 10,5			33,676 34,676 34,210 33,252	33,5 34,5 34 33
M 7 M 8 M 9	1 1,25 1,25	6,153 6,912 7,912	6 6,8 7,8		x 1,25 x 1,5	13,153 12,912 12,676	13 12,75 12,5			36,676 37,676 37,210 36,252	36,5 37,5 34 33
M 10 M 11 M 12	1,5 1,5 1,75	8,676 9,678 10,441	8,5 9,5 10,2	M 16 x	1,5	14,153 13,676 15,153 14,676	14 13,5 15 14,5	M 40 x x x	2	38,676 38,210 37,252	38,5 38 37
M 14 M 16 M 18	2 2 2,5	12,210 14,210 15,744	12 14 15,5	M 18 x	1,5	16,153 15,676 17,153 16,676 16,210	16 15,5 17 16,5 16	Х	1,5 ; 2 ; 3 ; 4	40,676 40,210 39,252 38,270	40,5 40 49 38
M 20 M 22 M 24	2,5 2,5 3	17,744 19,744 21,252	17,5 19,5 21		(1) (1),5 (2)	19,153 18,676 18,210	19 18,5 18	M 45 x x x x x	2 3	43,676 40,210 39,252 38,270	43,5 43 42 41
M 27 M 30 M 33	3 3,5 3,5	24,252 26,771 29,771	24 26,5 29,5		x 1 x 1,5 x 2	21,153 20,676 20,210	21 20,5 20		_ ′	46,676 46,210 45,252 44,270	46,5 46 45 44
M 36 M 39 M 42	4 4 4,5	32,270 35,270 37,779	32 35 37,5		x 1 x 1,5 x 2	23.153 22,676 22,210	23 22,5 22	M 50 x x x		48,676 48,210 47,252	48,5 48 47
M 45 M 48 M 52	4,5 5 5	40,779 43,297 47,297	40,5 43 47			•					
M 56 M 60 M 64 M 68	5,5 5,5 6 6	50,796 54,796 58,305 62,305	50,5 54,5 58 62								

G	T/1"		d	BSF	<u>T</u>		d
G 1/8 G 1/4 G 7/8 G 1/2 G 3/8 G 3/4 G 7/8 G 1 G 1 1/8 G 1 1/4 G 1 3/8 G 1 1/2 G 1 3/4 G 2 G 2 1/4 G 2 1/2 G 2 3/4 G 3	28 19 19 14 14 14 14 11 11 11 11 11 11 11 11	8,848 11,890 15,395 19,172 21,128 24,858 28,418 30,931 35,579 39,592 42,005 45,485 51,428 57,296 63,382 72,886 79,218 85,566	8,7 11,8 15 19 20,7 24,5 28 30,5 35 39,5 41,5 45 51 57 63 72,5 79 85,5	3/16 BSF 7/32 BSF 3/4 BSF 5/32 BSF 5/16 BSF 3/8 BSF 7/18 BSF 1/2 BSF 8/16 BSF 5/6 BSF 11/16 BSF 11/16 BSF 1 BSF 1 BSF 1 1/8 BSF	32 28 26 26 22 20 18 16 16 14 14 12 11 10 9 9 8 8 8	4,005 4,676 5,397 6,190 6,817 8,331 9,764 11,163 12,751 14,094 15,682 16,939 19,908 22,835 25,705 28,880 31,674 34,849 38,024 40,706	4 4,5 5,3 6,1 6,8 8,3 9,7 11,1 12,7 14 15,5 16,7 19,7 22,7 25,5 28,7 31,5 34,5 38 40,5
				1 3/4BSF 2 BSF 2 1/4BSF 1 1/2BSF	7 7 6 6	47,056 52,753 59,103	47 52 58,5

Drill Diameter for Threads

Drill Diameter for Threads

W	T/1"		d		UNC	T/1"		d		
1/16	60	1,218	1,1		Nr.1-64 UNC	l,	1,582	1,5		
3/32	48	1,894	1,85				Nr.2-56 UNC		1,872	1,8
1/5	40	2,570	2,5		Nr.3-48 UNC		2,146	2		
5/32	32	3,189	3,2		Nr.4-40 UNC	ļ	2,385	2,3		
3/16	24	3,690	3,6		Nr.5-40 UNC	ļ	2,697	2,6		
7/32	24	4,483	4,5		Nr.6-32 UNC	ļ	2,896	2,7		
1/4	20	5,224	5,1		Nr.8-32 UNC	ļ	3,531	3,5		
5/16	18	6,661	6,5		Nr.10-24 UN	С	3,692	3,8		
3/8	16	8,052	7,8		Nr.12-24 UN	С	4,597	4,5		
7/16	14	9,379	9,2		½-20 UN	C	5,258	5,1		
1/2	12	10,610	10,4		5/16-18 UN	C	6,731	6,5		
5/8	11	13,598	13,4		3/8-16 UN	C	8,153	7,9		
3/4	10	16,538	16,2		1/16-14 UN	C	9,550	9,3		
1/8	9	19,411	19,2		½-13 UN	C	11,024	10,7		
1	8	22,185	22		9/16-12 UNC	2	12,446	12,3		
1 1/8	7	24,879	24,5		6/8-11 UNC	2	13,868	13,5		
1 1/4	7	28,054	27,7		3/4-10 UNC		16,840	18,5		
1 7/8	6	30,555	30		7/8-9 UNC	2	19,761	19,5		
1 ½	6	33,730	33,5		1 -8 UNC		22,601	22,2		
1 5/8	5	35,921	35,5		1 1/8-7 UNC	2	25,349	25		
1 3/4	5	39,098	38,5		1 1/4-7 UNC		28,524	28		
1 3/8	4 ½	41,648	41,5		1 3/8-6 UNC	2	31,115	30,7		
2	4 ½	44,823	44,5		1 ½-6 UNC		34,290	34		
2 1/4	4	50,420	50		1 ³ / ₄ -5 UNC		39,827	39,5		
2 ½	4	56,770	56		2 – 4 ½ UNC		2 – 4 ½ UNC		45,593	45

Nr. 0-80 UNF Nr. 1-72 UNF	7	1,306					
			1,2	Nr. 12-32 UNEF		4,826	4,7
NI. 1-/2 UNI	7	1,613	1,5	3/4-32 UNEF		5,690	5,6
Nr. 2-64 UNF		1,913	1,8	3/8-32 UNEF		7,254	•
			,			ŕ	7,2
Nr. 3-56 UNF		2,197	2,1	7/16-28 UNEF		8,856	8,8
Nr. 4-48 UNF		2,459	2,4	½-28 UNEF		10,338	10,2
Nr. 5-44 UNF		2,741	2,6	6/16-24 UNEF		11,938	11,5
Nr. 6-40 UNF		3,023	2,9	3/8-24 UNEF		13,386	13,2
Nr. 8-36 UNF		3,607	3,5	11/18-24 UNEF		14,986	14,7
Nr. 10-32 UN		4,166	4	2/4-20 UNEF		16,561	16,5
Nr. 12-28 UN	ſF	4,724	4,6	12/16-20 UNEF		17,958	17,7
1/4 –28 UN	F	5,588	5,4	3/8-20 UNEF		19,568	19,5
6/18-24 UN	F	7,036	6,9	1/8-20 UNEF		21,133	21
3/8-24 UN	F	8,636	8,4	1-20 UNEF		22,733	22,5
7/16-20 UN	F	10,033	9,9	1 1/16-18 UNEF		24,308	24,2
½-20 UN	F	11,608	11,5	1 1/8-18 UNEF		25,781	25,5
9/16-18 UN	F	13,081	13	1 2/16-18 UNEF		27,381	27,2
3/8-18 UN	F	14,681	14,5	1 1/4-18 UNEF		28,956	28,7
3/4-16 UN	F	17,678	17,4	1 ¼-18 UNEF		30,556	30,5
3/8-14 UN	F	20,575	20,4	1 5/16 UNEF		32,131	32
1 – 12 UN	F	23,571	23,2			33,731	33,5
1 1/8-12 UN	F	26,746	26,5			35,306	35
1 ¾-12 UN	F	29,921	29,5			35,881	36,7
1 3/8-12 UN	F	33,096	32,7			38,481	38,2
1 1/2 –12 UN	F	36,271	36			40,081	40
		,				,	

Thread Hole

Kekuatan Ulir

Tabel. Batas

- 1. Untuk material pada umumnya (s) e \approx 1,5 \div 1,8 d
- 2. Untuk material keras (g) terbatas, ukuran e,t,s,g di kurangi dengan 'x', e \approx d. untuk material lunak (t), ukuran e,t,s,g ditambah dengan 'y', e \approx 2d

Gewinde			1)		2)	3)	41	40	
d	e	S	t	g	X	Y	d1	d2	С
M2	3	5.5	6.5	4.5	1	1	2.6	4.3	2.3
M2.5	3.7	6.7	7.7	5.7	1.2	1.3	3.1	5	2.9
M3	4.5	7.5	9.5	6.5	1.5	1.5	3.6	6	3.4
M4	6	9.5	12	8.5	2	2	4.8	8	4.6
M5	8	12	16	10.5	3	2	5.8	10	5.7
M6	10	16	20	14	3	3	7	11	6.8
M8	12	20	24	16	4	4	9	15	9
M10	15	24	28	19	5	3	11	18	11
M12	18	29	34	23	5	7	13.5	20	13
M16	22	33	38	27	5	10	17.5	26	17.5
M20	28	40	46	34	8	10	22	33	21.5
M24	32	47	54	39	7	16	26	40	25.5
M30	40	57	-	48	10	18	33	48	32
M36	48	67	-	57	13	22	39	57	38

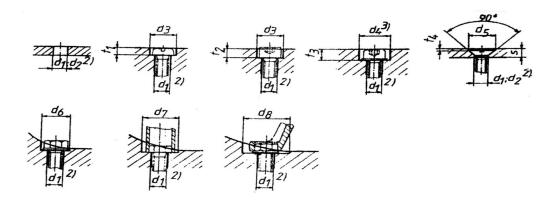
kelelahan ulir luar yang dikombinasikan dengan mur yang dipres.

(1) Gaya jepit awal (presentase dari batas mulur)

Tabel. Batas Tekanan dudukan dari bahan.

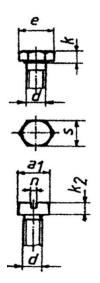
		Bilangan kekuatan	Batas kelelahan (kg/mm²)			
Cara Pembuatan	(1)	(DIN)	M4 - M8	M4 – M16	M18 –	
Ulir dirol						
Uli dirol		6G	6	5	4	
Ulir dibubut/	-	6G, 8G	6	5	4	
dipotong		10K, 12K	7	6	5	
ditemper						
Ulir dirol	25	6G	13	12	11	
Ulir dirol setelah	25	6G, 8G	13	12	11	
ditemper	25	10K, 12K	15	14	13	
Ulir dirol	70	6G	10	9	8	
Ulir dirol setelah		6G, 8G	10	9	8	
ditemper	70	10K, 12K	11	10	9	

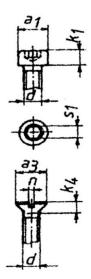
Bahan	Batas tekanan dudukan P### (kg/mm²)				
Baja St37, S20C	30				
Baja St50, S30C	50				
Baja C45 (ditemper), S45C	90				
Besi cor GG22, FC20	100				
Paduan magnesium-aluminium GDMgA19	20				
Paduan magnesium-aluminium GKMgA19	20				
Paduan silika-aluminium-tembaga	30				

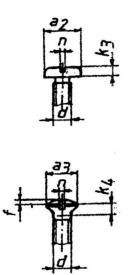


Tabel. Pemilihan sementara diameter nominal ulir

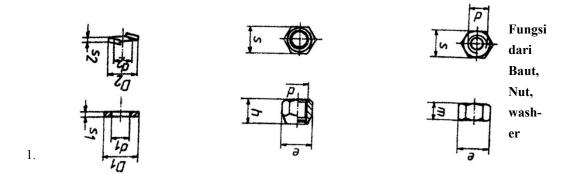
			Gaya							
Gaya l	uar dari 1 ba	ut (kg)	jepit	Di	Diameter nominal ulir (mm)					
			awal							
Beban	Beban	Beban								
statis	dinamis	statis								
searah	searah	atau	P_0 (kg)	6G	8G	10K	12K			
sumbu	sumbu	dinamis								
ulir P	ulir P	lintang Q								
160	100	32	250	4	4	-	-			
250	160	50	400	5	5	4	4			
400	250	80	630	6	6	5	5			
630	400	125	1000	7	7	6	5			
1000	630	200	1600	9	8	7	7			
1600	1000	315	2500	12	10	9	8			
2500	1600	500	4000	14	14	12	10			
4000	2500	800	6300	18	16	14	12			
6300	4000	12500	10000	22	20	16	16			
10000	6300	2000	16000	27	24	20	20			
16000	10000	3150	25000	-	30	27	24			
25000	16000	5000	40000	-	-	30	30			


Counter Boring, Counter sink Hole for Screw




Screw dia-		ough	Cou	nter bo	oring Counter sink- ing			Coun	Counter sinking for 90^0			Cut off diam- eter for		
meter	2)	fine	dian	neter		depth	1	90		Hex.screws and nuts				
d	d1	d2	d3	d4	t1	t2	t3	d5	t4	S min	d6	d7	d8	
M 1 M 1,5	1,3 1,5	1,1 1,3	2,2 2,5		0,8 0,9	-	-	2 2,5	0,2 0,2	1 1,2	3,8 4,3	-	-	
M 1,6 M 2 M 2,5	2 2,6 3,1	1,7 2,2 2,7	3,3 4,3 5	5,5 6,5	1,2 1,6 2	- - -	- - -	3,3 4,3 5	0,2 0,25 0,35	1,6 2 2,25	5 6 8	- - -	-	
M 3 M 4 M 5	3,6 4,8 5,8	3,2 4,3 5,3	6 8 10	7 9 11	2,4 3 3,8	2,8 3,6 4,6	4,3 5,5 7	6 8 10	0,35 0,35 0,35	2,5 3,5 4	8 10 11	13 18 18	13 18 18	
M 6 M 8 M10	7 9 11	6,4 8,4 10,5	11 15 18	13 18 20	4,8 6 7	5,5 7 9	8,4 10,6 13	11,5 15 19	0,45 0,7 0,8	4,5 5,5 7	15 20 24	18 24 28	20 26 33	
M 12 M 16 M 20	14 18 22	13 17 21	20 26 33	24 30 36	8 10 12	11 14 18	15,5 20,5 24,5	22,5 30 37	1 1,3 1,8	8 11 13	26 33 40	33 40 46	36 46 53	
M 24 M 30 M 36	26 33 39	25 31 37	40 48 57	43 53 61	- - -	22 27 33	29,5 38 44	- - -	- - -	- - -	46 61 71	57 71 82	71 82 92	

Screw Head



Scre w dia- me- ter		agonal s		Inbus screw Panhead screw Lenshead screw Cuntersink screw									
d	S	e	k	al	s1	k1	k2	a2	k3	a3	k4	f	n
M 1 M 1,2	2,5	2,9 3,5	-	2 23	-	-	0,7 0,8	-	-	1,9 2,3	0,6 0,7	0,2 5 0,3	0,2 5 0,3
M 1,6 M 2 M 2,5	3,2 4 5	3,7 4,6 5,8	1,1 1,4 1,7	3 3,8 4,5	1 1 1		1 1,3 1,6	- - 5	- - 1,5	3 3,8 4,7	0,9 5 1,2 1,5	0,4 0,5 0,6	0,4 0,5 0,6
M 3 M 4 M 5	5,5 7 8	6,4 8,1 9,2	2 2,8 3,5	5,5 7 8,5	2,5 3 4	3 4 5	2 2,6 3,3	6 8 10	1,8 2,4 3	5,6 7,4 9,2	1,6 5 2,2 2,5	0,7 5 1 1,2 5	0,8 1 1,2
M 6 M 8 M 10	10 13 17	11,5 15 19,6	4 5,5 7	10 13 16	5 6 8	6 8 10	3,9 5 6	12 16 20	3,6 4,8 6	11 14, 5 18	3 4 5	1,5 2 2,5	1,6 2 2,5
M 12 M 16 M 20	19 24 30	21,9 27,7 34,6	8 10 13	18 24 30	10 14 17	12 16 20	7 9 11	-	-	21, 5 28, 5 36	6 8 10	-	3 5 5
M 24 M 30 M 36	36 46 55	41,6 53,1 63,5	15 19 23	36 45 54	19 22 27	24 30 36	- - -		- - -		- - -	- - -	- - -

Wing bolt

Screw di- ameter	Hexagonal nuts Protecting nuts			ecting	Rin	gs Washe	ers	Spring rings		
d	S	e	m	h	d1	D1	s_1	d_2	d_2	s_2
M 1	2,5	2,9	0,8	-	1,1	3,2	0,3	-	-	-
M 1,2	3	3,5	1	-	1,3	3,8	0,3	-	-	-
M 1,6	3,2	3,7	1,3	-	1,7	4	0,3	-	-	-
M 2	4	4,6	1,6	_	2,2	5	0,3	2,1	4,4	0,5
M 2,5	5	5,8	2	_	2,7	6,5	0,5	2,6	5,1	0,6
M 3	5,5	6,4	2,4	3,6	3,2	7	0,5	3,1	6,2	0,8
M 4	7	8,1	3,2	4,8	4,3	9	0,8	4,1	7,6	0,9
M 5	8	9,2	4	6	5,3	10	1	5,1	9,2	1,2
M 6	10	11,5	5	6,6	6,4	12,5	1,6	6,1	11,8	1,6
M 8	13	15	6,5	8,8	8,4	17	1,6	8,1	14,8	2
M 10	17	19,6	8	11	10,5	21	2	10,2	18,1	2,2
M 12	19	21,9	10	13,2	13	24	2,5	12,2	21,1	2,5
M 16	24	27,7	13	17,6	17	30	3	16,2	27,4	3,5
M 20	30	34,6	16	22	21	37	3	20,2	33,6	4
M 24	36	41,6	19	26,4	25	44	4	24,5	40	5
M 30	46	53,1	24	30	31	56	4	30,5	48,2	6
M 36	55	63,5	29	36	37	66	5	36,5	58,2	6

D. Untuk pengikatan pada beban ringan dan frekuensi bongkar pasang yang tinggi.

2. Countersunk flat head screws

Untuk penjempitan kuat dan tidak gampang slek.

3. Hexagon head screw

Untuk pengikatan kepala hexagon diluar konstruksi, serta dapat menahan beban kuat.

4. Hexagon head bolt

Untuk pengikatan/ penyambungan konstruksi panjang yang tidak membutuhkan lubang ulir.

5. Slotted countersunk

flat head screw

Untuk pengikatan konstruksi benam countersunk dengan beban pengerasan sedang dan pengikatan rapat pada plat tipis.

6. Hexagon socket head cap screw

Untuk pengikatan konstruksi benam counterbor dengan beban kuat plat sambung yang tebal.

7. Recessed pan head screw

Untuk pengikatan/sambungan kuat yang dimungkinkan kepala bulat timbul pada bagian permukaan konstruksi.

8. Hexagon socket button

head screw

Untuk pengikatan/sambungan kuat yang dimungkinkan kepala bulat timbul pada permukaan konstruksi serta dapat digunakan pada konstruksi yang tebal.

9. Square recessed flat countersunk

Untuk pengikatan konstruksi benam counersunk dengan pengikatan kuat pada konstruksi tipis.

10. Set screw

Untuk pengikatan konstruksi yang tidak memungkinkan digunakan baut dengan kepala countersunk ataupun counterbor.

11. Hexagon nut

12. Digunakan untuk mengikat konstruksi dengan pengunci pada bagian ujung.

12. Countersunk flat cub nut

Untuk pengikatan konstruksi dan sudah dilengkapi ring dan pelindung ujung poros.

Urutan kerja pemasangan/pelepasan Bolt&Nut?

- Urutan Melepas Bolt&Nut:
- 13. Hexagon Manganalisa tentang cara melepas Bolt&Nut
 Untuk pengkatan kan statksi dan sudah dilengan ingan ringar.
 - c. Melepas mur dari ikatan baut dengan kunci (pas, ring)
- 14. Cub nut delepas kepala baut dengan kunci L Bila memekai baut L dari body
 Untuk pengikatan konstruksi dengan pelindung ujung poros
 e. Menata atau menandai baut yang sucah dilepas agar tidak tercampur atau hilang

15. Hexagon mut with plastic seal Urutan Memasang Bolt & Nut:

Untuk pengikatan pada konstruksi yang membutuhkan tingkat kerapatan tinggi sterutama untuk menahan reri pelu mas pada bodi atau baut

- c. Memilih Bolt&Nut sesuai dengan yang dilepas tadi (lama atau baru), M, W, Kisar
- 16. Nut for welding ang Bolt&Nut dengan kunci (pas, ring, L), diberi washer (ring)

 Digunakan untuk penyambungan dengan cara nut dilas pada konstruksi,
 Menguli atau melinat, mengukur apakan pemasangannya sudah benar atau belum.

 (dengan mengukur jarak antar pasangan, melihat kerenggangan antar body dan
- 17. Wing nut penutup)

Untuk pengikatan mur dengan frekuensi bongkar pasang yang tinggi.

Lara pengecekan Hashleck ringan baut dan Mur:

Untuk pengikatan konstruksi, biasa ditambahkan dengan ring. - Melihat kelurusan Bolt&Nut

19. He Medinat kedurusan terhadap body

Untwergedertand wertending and dising the distinguished agar mur tidak lepas sepenuhnya.

- Menggeser body apakah sudah rapat

20. Tradelibratakerapatan dengan body

Mur untuk sambungan baut, untuk posisi dalam.

G. Kondisi Baut dan Mur

21. Internal tooth spekrypahetian mur yang sudah dipasang atau yang akan dipasang maka harus dipasang untuk panguncianga pauti dela baanutasa Pianguncianga untuk panguncianga panguncianga untuk panguncianga panguncianga panguncianga untuk panguncianga untuk panguncianga panguncianga panguncianga untuk pang

lock washer

biasa digunakan pada komponen kelistrikan ataupun permukaan bearing dengan lubang

dangkal.

23. External tooth lock

countersunk washer ring pengunci baut dengan kepala coutersunk.

24. External tooth lock washer

Ring untuk pengunci agar mur tidak berputar. Biasanya untuk benda lunak.

25. Spring lock washer

Ring per untuk mur, pada kondisi benda yang bergerak atau bergetar.

26. Flat washer

Pemakaian baut atau mur untuk kondisi normal.

E. Perawatan

Untuk perawatan dari Baut dan mur tidaklah terlalu sulit karena merupakan barang yang tidak bergerak dan sederhana. Untuk perawatan hanya dengan pengecekan kekencangan secara periodik. Penggantian juga dapat dilakukan apabila sudah ada kecacatan. Untuk Jadwal perawatan dari Baut dan mur dapat dibuat berdasarkan dari tingkat kebutuhan dari mesin. Yaitu diidentifikasi dari **getaran, besar dari baut, beban.** Untuk itu dapat dicontohkan beberapa komponen yang ada dan juga posisi baut, sehingga akan mendapatkan suatu rencana perawatan Baut dan mur yang optimal.

Contoh: Format Jadwal Perawatan

N o	Nama Kom- ponen	Posisi	Kode/ nama Baut dan mur	Jenis Tool	Periode Perawa- tan	Pe- nanggung Jawab
1.	Konveyor	Body stain- less	Imbuss (L) M10	Kunci L	3 bln	Rio

Contoh: Format Laporan Perawatan

No ·	Tanggal Perawatan	Tools	Posisi Baut/ mur	Nama Baut/ mur	Nama Oper- ator	TTD
1.	10 – 6 - 07	Kunci L 8	Body satin- less	Imbus (L) M10	Joni	

Mekanika Dan Elemen Mesin

Mekanika Dan Elemen Mesin

- a. Ujung Bolt&Nut rusak (cacat)
 - Menekan benda keras sehingga ujung ulirnya jadi rusak
 - Jatuh sehingga mengenai ujungnya
- b. Bolt&Nut kondisi longgar/goyang

Sudah aus karena lama pemakaian

Sering dilepas dan pasang

c. Ulir rusak (dol, terpuntir)

Kurang pelumasan

Kisar salah dipaksakan

Pengencangan yang terlalu kuat

Ulir kena pukul, gergaji, tertindih sehingga tidak runcing lagi, rusak

- d. Baut yang bengkok
 - Menahan beban yang overload
 - Penguncian yang terlalu kuat
 - Kesalahan pemasangan
- e. Baut patah
 - Pengencangan terlalu kuat
 - Ada beban kejut dari body atau penyangga
- f. Kepala Baut cacat

Pemakaian kunci yang salah, sehingga kepala baut rusak

Posisi kerja yang salah

H. Safety

Untuk keselamatan kerja pada pemasangan baut dan Mur serta alatnya yang dipakai adalah:

Alat-alat:

- Kacamata - Sarung Tangan

- Baju kerja - Sepatu Safety

Kondisi kerja:

Jangan mengencangkan atau melepas baut pada kondisi body berputar

Pakailah selalu kunci yang sesuai dengan ukuran pada kepala baut atau L

Sebaiknya pakai kunci Ring bila memungkinkan.

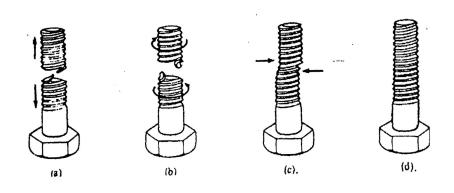
Baut yang rusak jangan dipasang, karena akan menyulitkan bila dilepas.

Pilihlah baut / mur yang sesuai dengan pasanganya, jangan dipaksakan bila tidak masuk.

Untuk pengencangan, bila kepala dan body sudah rapat, itu cukup, jangan terlalu keras sekali, sehingga kepala patah dan nanti kalau melepas akan sulit.

PERHITUNGAN SAMBUNGAN MUR DAN BAUT

Pemilihan Mur dan Baut


Baut dan Mur merupakan alat pengikat yang sangat penting untuk mencegah kecelekaan atau kerusakan pada mesin.

Pemilihan baut dan mur sebagai alat pengikat harus dilakukan dengan seksama untuk mendapatkan ukuran dan jenis yang sesuai.

Dari sisi fungsi, pemilihan jenis dapat berupa ulir tunggan atau majemuk, ulir metris atau withworth, halus atau kasar, ulir segitiga, segi empat bulat atau trapesium.

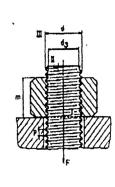
Untuk pemilihan bahan dan ukuran, mengacu pada kebutuhan akan kekuatannya.

Macam-macam kerusakan yang dapat terjadi pada Baut :

A. Putus karena Tarik

c. Akibat geser

B. Putus karena Puntir


d. Ulir Lumur (dol)

Untuk menentukan ukuran Baut dan Mur, berbagai faktor harus diperhatikan seperti sifat gaya yang bekerja pada Baut, syarat kerja, Kekuatan bahan,kelas ketelitian dan lain-lain

Adapun gaya-gaya yang bekerja pada Baut dapat berupa:

- 1. Beban statis aksial murni
- 2. Beban aksial, bersama dengan punter
- 3. Beban geser
- 4. Beban tumbukan aksial

Apabila pada sebuah Baut bekerja gaya tarik F, maka dalam Baut akan timbul tegangan tarik, yang dapat menyebabkan patah.

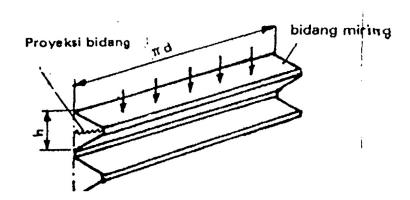
Karena diameter d₃ < d, kemungkinan putus lebih besar pada penampang kaki ulir. Dalam hal ini persamaan yang berlaku adalah :

$$\sigma t = \frac{F}{A}$$

$$\sigma t = \frac{\frac{F}{\pi . d_3^2}}{\frac{\leq \sigma t}{\sigma t}}$$

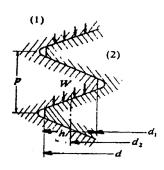
Dimana:

F = Gaya tarik aksial pada baut


A = Luas penampang baut

σt = Tegangan tarik yang terjadi di bagian yang berulir pada diameter inti d₃

d₃ = Diameter inti dari ulir


Tekanan bidang pada bidang ulir Baut dan Mur :

Gaya aksial F terbagi pada bidang-bidang ulir Mur dan Baut, jika jumlah lingkaran ulir pada mur (m) = Z, maka tiap lingkaran ulir mendapat gaya tekan F.

Tekanan bidang pada ulir dapat dicari dengan rumus :

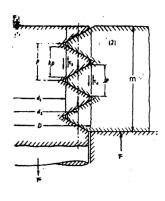
$$\rho = \frac{F}{\pi \cdot d_2 \cdot h \cdot z} = \frac{\bar{\rho}}{\bar{\rho}}$$

h = tinggi profil yang menahan gaya

z = jumlah lilitan ulir

d₂ = Diameter efektif ulir

$$\frac{F}{\pi \cdot d_2 \cdot h \cdot \rho}$$


Tinggi mur (m)

Dapat dihitung dengan rumus:

$$M = z . p$$
 $p = jarak bagi / kisar ulir$

Menurut standar m = (0.8 - 1)d

Kekuatan ulir baut dan ulir mur

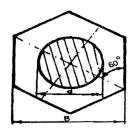
Gaya aksial F menimbulkan tegangan geser pada bidang silinder kaki ulir baut dan mur.

Tegangan geser pada kaki ulir luar :

$$\tau b = \frac{F}{\pi . d3 . k . p . Z}$$

Tegangan geser pada kaki ulir dalam:

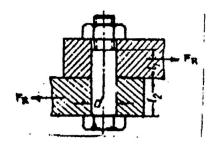
$$\tau n = \frac{F}{\pi . D. j. p. z}$$

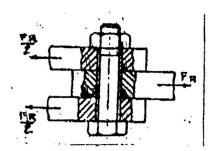

untuk ulir metris dapat diambil

$$k\approx 0.84 \hspace{1cm} j\approx 0.75$$

 τ b dan τ n, harus lebih kecil dari tegangan geser yang dijjinkan.

Permukaan dimana kepala baut dan mur akan duduk, harus dapat menahan tekanan permukaan sebagai akibat dari gaya aksial baut untuk menghitung besarnya tekanan ini, dianggap bagian kepala baut atau mur adalah lingkaran yang diamter luarnya sama dengan jarak dua sisi sejajar segi enam (B).


Maka besar tekanan permukaan dudukan adalah:


$$p = \frac{\frac{F}{\pi}(B^2 - d^2)}{\frac{\pi}{4}(B^2 - d^2)}$$

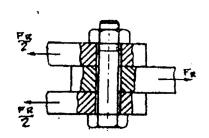
Tabel Tekanan Permukaan yang diijinkan pada Ulir:

Bal	nan	Tekanan permukaan yang diijinkan $\stackrel{-}{ ho}$ (N/ m 2)				
Ulir Luar	Ulir Dalam	Untuk pengikat	Untuk penggerak			
Baja liat	Baja liat atau perunggu	30	10			
Baja keras	Baja liat atau perunggu	40	13			
Baja keras	Besi cor	15	5			

Kekuatan sambungan dengan pembebanan geser

Jika gaya radial (F_R) bekerja pada batang paku, penampang normalnya mengalami tegangan geser sebesar :

$$\bar{\tau} \geq \frac{F_R}{\frac{\pi}{4}.d^2}$$

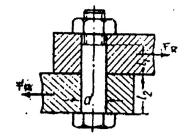

Sebelum mendapat gaya geser (F_R), terlebih dahulu baut dikencangkan, maka akibat gaya pengencangan (F_O) pada baut terjadi kekuatan gesekan antara permukaan plat sambungan yang diperimpitkan.

Agar plat sambungan tidak bergeser setelah mendapat gaya F_R , maka gaya tegang F_O harus lebih besar dari pada F_R . Dan gaya geser plat (W).

W > FR

W = Fo. F.1 \geq F_R

1. uhi


Dan gaya geser plat harus memenpersamaan

W = Gaya geser akibat gaya F_o pada permukaan plat sambungan.

F = Koefisien geser 0,1 - 0,2

I = Jumlah bidang geser.

2. Perhatikan gambar

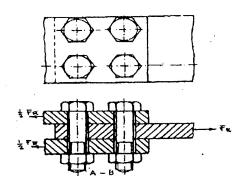
Jika harga koefisien geser = 0,2

Harga 1 = 2 maka:

$$F_{0} \ge \frac{F_{R}}{f \cdot i} = \frac{F_{R}}{0,2 \cdot 2}$$

$$f = 0,2 \qquad i = 1$$

$$F_0 \ge \frac{FR}{0,2.1} = 5 F_R$$


Gaya F_O adalah gaya aksial, sehingga baut mula-mula dibebani gay atarik, maka diameter baut dapat dihitung.

$$\sigma t = \frac{\frac{F_O}{\pi d_3^2}}{d_3^2}$$

$$d_3 = \frac{4 \cdot F_O}{\pi \cdot \sigma t}$$

Contoh soal:

1.

Tiga buah pelat diikat oleh empat buah baut M12 koefisien gesek f = 0,2, σt bahan baut = 64 N/mm². Tegangan pengencangan baut yang diijinkan = 0,6 σt tekanan permukaan yang diijinkan 30 N/mm².

Hitung: Gaya gesek yang terjadi karena gaya Fo

Penyelesaian:

Fo yang diperoleh untuk pengencangan tiap baut :

Fo = 0,6.
$$\frac{\pi}{4}$$
 . d_3^2 ot
= 0,6.0,785.9,852.64 F = 2102 08 N

Untuk 4 buah baut:

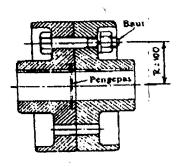
Fo = 2102,08.4 = 8408.35 Newton

Gaya gesek yang terjadi karena gaya (Fo) 4 buah baut

 $W = Fo \cdot f \cdot 1 \ge FR$

= 8408,35 . 0,2 . 2

= 3363,34 Newton


Tekanan permukaan dudukan kepala baut dan mur

$$P = \frac{\frac{\text{Fo}}{\frac{\pi}{4}(\text{B}^2 - \text{d}^2)}}{\frac{\pi}{4}(\text{B}^2 - \text{d}^2)} = \frac{2102,08}{0,785(19^2 - 12^2)} = 12,340 \text{ N/mm}^2$$
Baik 12,340 N/mm² 30 N/mm²

Lembar Latihan

Soal-soal Latihan

Soal:

Dua bagian proses seperti gambar disambung dengan 8 buah baut pengikat σ t baut = 390 N/mm². Tegangan pengencangan baut 0,6. σ t. Diameter terkecil ulir baut d₃ = 8,16 mm koefisien

gesek(f) = 0.15

Hitung:

Momen puntir maksimum yang dapat diberikan pada poros dengan tidak terjadi geseran antara kedua poros.

Penyelesaian:

Gaya pengencangan yang 8 buah baut

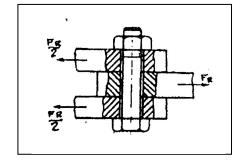
Fo = 8.
$$\frac{\pi}{4}$$
 . D₃². 0,6 ot
= 8. 0,785 . 8.16² . 0,6 . 390
= 97848,87

Gaya gesek yang terjadi karena Fo

W = Fo . f . i
$$\geq$$
 F_R
= 97848,87 . 0,15. 1 = 14677,33 Newton

Momen yang diberikan pada poros dengan tidak terjadi slip

$$M_P \leq FR \cdot R$$

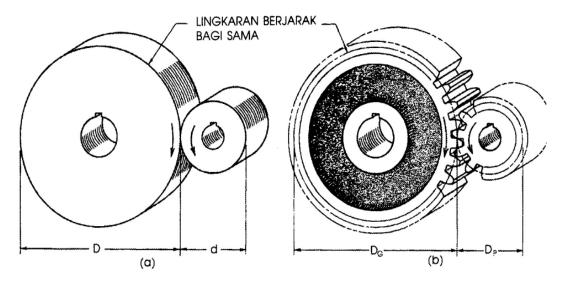

$$M_P \le 12231,10.100$$

$$M_P \leq 1223110 \; N.mm$$

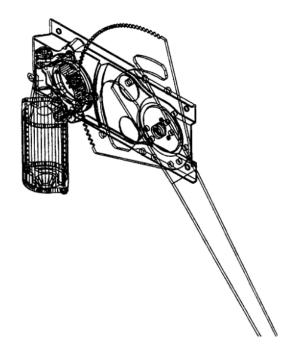
Latihan:

- 1. Apa fungsi dari mur baut?
- 2. Ada berapa jenis ulir
- 3. Apa arti ulir M14 x 2, L 40.
- a. Apa arti M
- b. Berapa diameter luar ulir,
- c. Berapa panjang ulir
- d. Berapa kisar ulir
- e. Berapa sudut ulir
- f. Bila dibuat Mur, maka berapa diameter bor yang digunakan?
- 4. Apa arti ulir W ½ x 12
- a. Apa arti W
- b. Berapa diameter luar ulir,
- c. Berapa panjang ulir
- d. Berapa kisar ulir
- e. Berapa sudut ulir
- f. Bila dibuat Mur, maka berapa diameter bor yang digunakan?
- 5. Berapa kekuatan momen pengencangan baut jika jenis baut kepala segi enam M12 ada tanda angka 4 ?
- 6. Berapa ukuran diameter baut yang kuat untuk menahan beban 2,5 T, jika menggunakan baut yang jenis 8.8

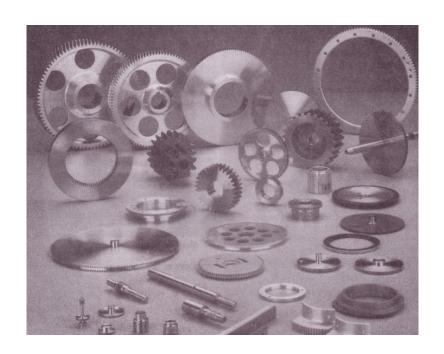
BAB III RODA GIGI



Roda gigi sebagai komponen mesin berfungsi sebagai pemindah tenaga dari poros ke poros yang lain.Dalam teknik mesi roda gigi merupakan komponen pemindah tenaga yang sangat penting. Hampir semua mesin mekanik mempergunakan roda gigi. Untuk memindahkan daya yang besar , maka Roda gigi merupakan pilihan

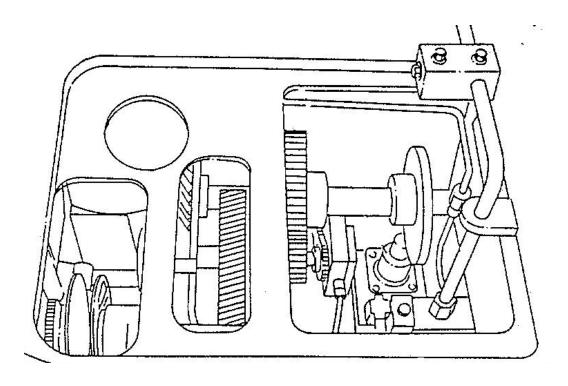

MACAM- MACAM RODA GIGI

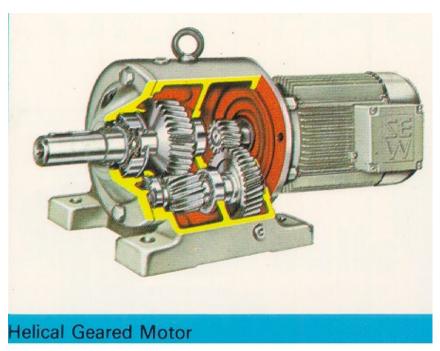
Berdasarkan prinsip lengkungan profil gigi -gigi (Spur Gear) Roda gigi lurus digunakn pada pemindahan tenaga yang kedua porosnya sejajar

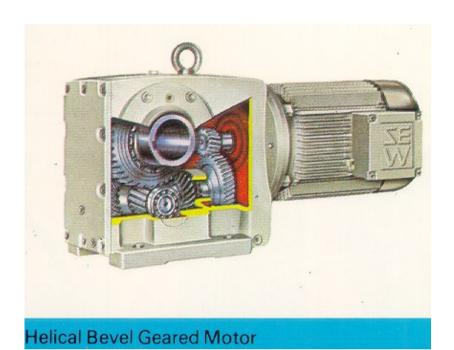


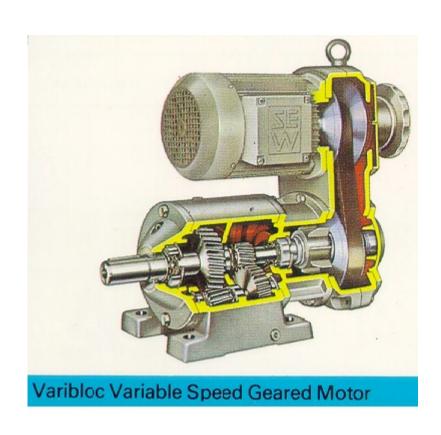


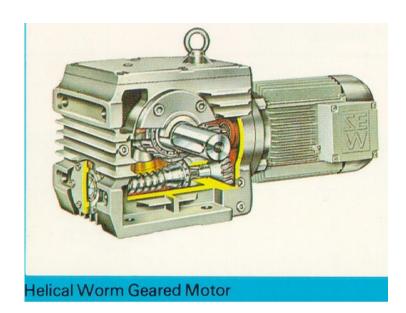
Roda gigi Helik
Roda gigi Kerucut (Bevel Gear)
Roda gigi Cacing (Worm Gear)
Roda gigi batang (Rack)
Roda gigi rantai (chain Wheel

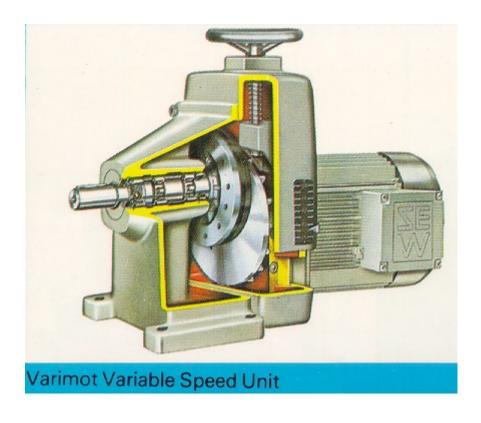


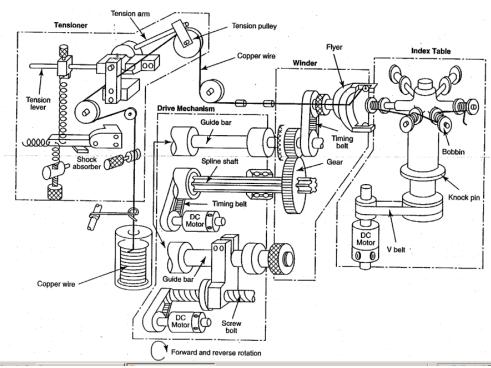












PERHITUNGAN RODA GIGI RODA GIGI SILINDRIS

TUJUAN:

Menghitung ukuran roda gigi sesuai dengan persyaratan kekuatan / beban.

URAIAN MATERI:

Roda Gigi

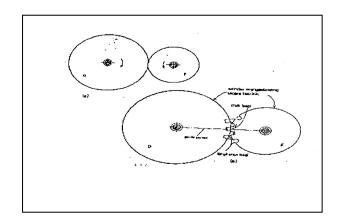
Transmisi gerak putar dari suatu poros ke poros yang lain adalah suatu masalah untuk setiap perencanaan. Poros-poros tersebut harus berputar dengan kecepatan yang sama atau berlainan, tetapi perbandingan putarannya, berapa pun besarnya harus mempunyai harga yang tetap selama poros berputar. Hal ini hanya dapat terjadi bila tidak ada selip pada transmisi, dan ini dapat dicapai dengan transmisi rantai, ban bergigi dan roda gigi. Sebagai contoh misalnya dua buah poros, satu

sebagai penggerak sedang yang lain digerakkan mempunyai perbandingan perputaran 1 : 3, perbandingan ini harus tetap untuk beberapa banyak putaran pun. Bila poros penggerak berputar satu kali maka poros yang digerakkan harus berputar 3 kali. Bila poros penggerak berputar 1°, maka poros yang digerakkan harus berputar 3°. Mekanisme yang paling sederhana untuk memenuhi hal tersebut diatas adalah sepasang silinder dengan gerak menggelinding sempurna.

Bila tidak ada penggelinciran (selip), dan diameter roda silinder yang dipasang pada poros penggerak 3 x dari diameter roda silinder yang dipasang pada poros yang digerakkan, putarannya selalu tetap :

$$\frac{{}^{\mathbf{w}}\mathbf{F}}{{}^{\mathbf{w}}\mathbf{D}} = \frac{{}^{\mathbf{D}}\mathbf{D}}{{}^{\mathbf{D}}\mathbf{F}}$$

Dimana


^wD = kecepatan putaran penggerak.

^wF = kecepatan putaran yang digerakkan.

^DD = diameter roda silinder penggerak.

^DF = diameter roda silinder yang digerakkan.

Dalam beberapa hal dengan menekankan kedua silinder, sehingga terjadi gaya gesek yang cukup untuk menjaga agar tidak terjadi slip, maka perbandingan putaran yang tetap yang diinginkan dapat tercapai.

Gambar 1.

Tetapi untuk menjamin agar tidak terjadi slip sama sekali untuk keperluan transmisi ini, maka keadaan kontak pada kedua roda harus diperoleh dengan cara yang lebih baik. Hal ini dapat dicapai dengan memasang pasak pada roda yang licin itu. Tetapi ini hanya dapat dipakai untuk putaran rendah. Untuk transmisi dengan putaran tinggi, roda bergigi pasak tadi, tidak dapat n begitu saja (Gb. 1.b).

Transmisi roda gigi adalah transmisi yang paling banyak dipakai. Praktis semua pemindahan daya dapat dilakukan dengan memakai roda gigi. Baik untuk proses sejajar, maupun untuk poros tegak lurus, semuanya dapat dilakukan transmisi dengan roda gigi. Juga untuk poros yang bersilangan, dengan bentuk roda gigi tertentu dapat dilakukan pemindahan daya dan putaran.

Untuk keperluan transmisi dengan kedudukan poros yang bermacam-macam tersebut, dapat dibedakan beberapa macam roda gigi :

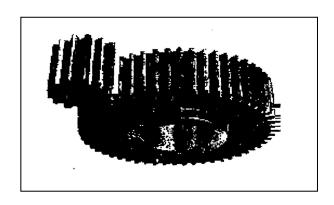
Roda gigi silindris dengan gigi lurus.

Roda gigi silindris dengan gigi miring.

Roda gigi silindris dengan gigi bentuk panah.

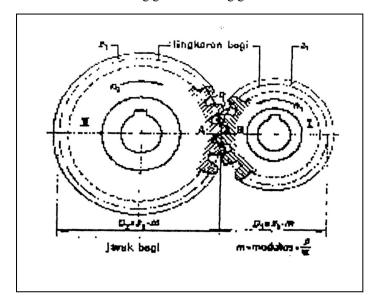
Roda gigi silindris dengan gigi busur.

Roda gigi kerucut.

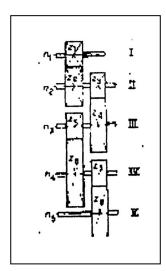

Roda gigi spiral.

Roda ulir.

Roda gigi silindris a, b, c, d, untuk transmisi dengan poros sejajar, roda gigi kerucut untuk poros yang berpotongan, roda gigi spiral untuk poros bersilangan tegak lurus dengan perbandingan putaran antara 25 sampai dengan 50.


RODA GIGI SILINDRIS

Roda Gigi Silindris dengan Gigi Lurus



Gambar 2. Roda gigi silindris bergigi lurus

Gambar 3.

Gambar 4.

Perbandingan putaran antara dua roda gigi yang berpasangan, berbanding terbalik dengan jumlah gigi-giginya.

Perbandingan putaran dapat disebut juga perbandingan transmisi dan diberi lambang i.

$$\frac{n_1}{n_2} = \frac{z_2}{z_1} = \frac{D_2}{D_1}$$

Dengan cara ini dapat dicari perbandingan putaran untuk proses dengan roda gigi bersusun.

Contoh:

Bila putaran poros I n_1 , maka :

$$n_1 : n_2 = z_2 : z_1,$$

maka putaran poros II

$$rac{z_1}{z_2}$$

Untuk poros II dan III berlaku:

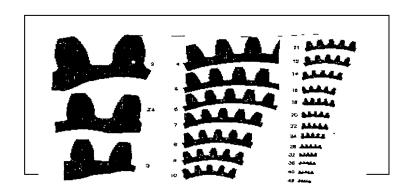
$$N_2 : n_3 = z_4 : z_3$$

$$N_3 = n_2 . \frac{\frac{Z_3}{Z_4}}{Z_4}$$

$$\frac{z_1}{z_2} \cdot \frac{z_3}{z_4}$$
n₁. (lihat gambar 5-4).

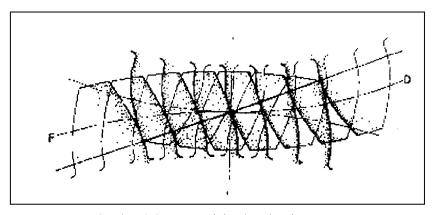
Jadi

Dengan cara yang sama didapat :


$$\frac{Z_1}{Z_2} \cdot \frac{z_3}{z_4} \cdot \frac{z_5}{z_6}$$
 $n_4 = n_1$.

jadi putaran poros ke empat dapat dicari, tanpa menghitung lebih dulu putaran poros II dan III. Keliling lingkaran bagi :

p


Hasil bagi π disebut modul gigi dan ditulis dengan lambang m.

Harga m untuk gigi-gigi dapat dilihat dilihat pada tabel 5.1.

Gambar 5. Roda gigi dengan diameter lingakaran bagi sama, tetapi dengan modul yang sama.

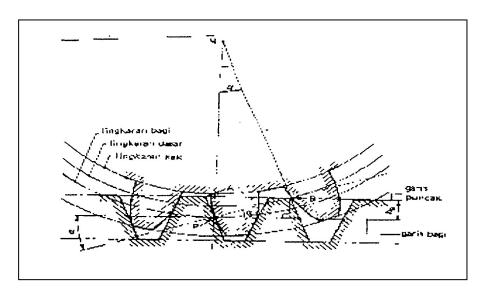
Gambar 6. Sepasang gigi sedang bersinggungan.

Tabel 1 Deretan Modal

Modul M (mm)	0,31,0	1,254,0	4,57	816	1824	2745	5075
Kenaikan angka	0,1	0,25	0,5	1	2	3	5

Untuk memproduksi gigi, selain p maka m memegang peranan penting. Sebagaimana p, maka untuk dua roda gigi yang berpasangan harga m harus sama.

PERHITUNGAN KEKUATAN PADA RODA GIGI SILINDRIS BERGIGI LURUS


Untuk menentukan ukuran-ukuran gigi pada roda gigi, beberapa faktor harus ditinjau:

a. kekuatan gigi terhadap lenturan.

- a. Kekuatan gigi terhadap tekanan.
- C. Pemeriksaan terhadap panas yang terjadi.

Disamping yang disebut diatas, faktor pengerjaan memegang peranan penting, karena ketidak sempurnaan dapat menyebabkan getaran dan tumbukan, yang menyebabkan patah atau aus secara cepat.

Gambar 7.

$$Sin \alpha = \frac{PB}{PM}$$

$$PB = PM Sin \alpha$$

$$PM = \frac{diameter \ lingkaran \ bagi}{2} = \frac{mz}{2}$$

$$PB = \frac{mz}{2} sin \alpha$$

Dari gambar dapat dilihat:

Teknik Kerja Elemen dan Mekanika

$$\sin \alpha = \frac{hk}{PB}$$

 $hk = PB \sin \alpha$

$$hk = \frac{mz}{2} \sin^2 \alpha$$

Agar tidak terjadi "undercutting", maka:

$$Z_{\min} = \frac{2hk}{M\sin^2\alpha}$$

Untuk $\alpha = 20^{\circ}$

$$Z_{\min} = \frac{2hk}{M \sin^2 \alpha} = \frac{2m}{m \sin^2 20^\circ} = 17 \text{ gigi}$$

Untuk $\alpha = 15^{\circ}$

$$Z_{\min} = \frac{2}{\sin^2 15^{\circ}} = 17 \text{ gigi}$$

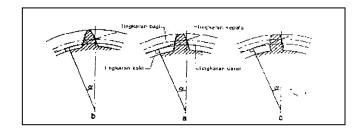
a. Kekuatan gigi terhadap kelenturan.

Pada waktu roda gigi berputar, bekerja gaya pada profil gigi yang berkontak, dengan arah yang sesuai dengan garis kontak. Gaya ini tegak lurus terhadap profil gigi. Letak garis kerja gaya berubah-ubah sesuai dengan kedudukan pada awal dan akhir cengkeraman.

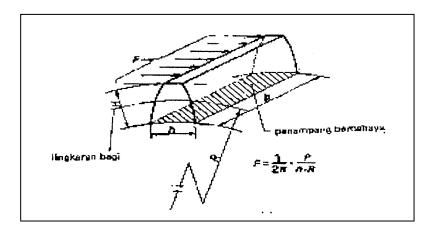
Penampang berbahaya terletak pada kaki gigi, mendapat beban merupakan kombinasi lentur, tekan dan geser. Karena letak gaya berpindah-pindah selama gigi mulai masuk kontak sambil meninggalkan pasangan, dan letak ini berpindah dari kepala sampai hampir ke dekat kaki (lihat perjalanan pasangan gigi, gambar 6.). Maka untuk memudahkan perhitungan dipakai suatu gaya ekuivalen, yang dianggap bekerja pada kepala gigi (lihat gambar 9.), terbagi rata dengan resultante F. untuk menghitung besar gaya F, dipakai gaya keliling yang bekeja pada lingkaran bagi.

$$F = \frac{2T}{D} dan T = \frac{P}{\varphi} = \frac{1}{2\pi} \frac{P}{n}$$

Jadi


Menurut Prof. Bach:

Momen bengkok pada kaki gigi:


$$M_b = W_b \cdot \sigma b$$

Gambar 8.

Atau F.H = $1/6 \text{ bh}^2 \cdot \sigma \text{ b}$

Gambar 9. Gaya-gaya bekerja pada kepala gigi

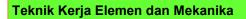
Untuk roda gigi involut maka harga di normalisir :

$$H = 2,25 = 2,25$$
 $\frac{p}{\pi}$

Untuk gigi normal (tanpa koregasi) gaya h = 0,55 p.

F.2,25
$$\frac{p}{\pi} = \frac{1}{6}b(0,55p)^2\overline{\sigma}_b$$

F = $\frac{1}{14,3}b.p.\underline{\sigma}b = \frac{\sigma b}{14,3}b.p$


Atau

$$F = c \cdot p \cdot b$$

Faktor c tergantung pada bahan dan diberi nama faktor bahan.

Disini belum diperhitungkan faktor kecepatan. Oleh karena itu ditambahkan koreksi dan menjadi faktor bahan dan kecepatan :

$$C = \frac{\alpha \frac{a}{a+v} \cdot \frac{\sigma b}{14,3}}{14,3}$$

V adalah kecepatan keliling titik pada lingkaran kisar.

$$\frac{D}{V \; m/s = \omega \; . \; R = \omega} \; \frac{D}{2} = 2 \; \pi \; n \; \frac{D}{2} = \pi \; n \; D \label{eq:vm/s}$$

Harga α dan a, lihat tabel 5.2 dan 5.3

Tabel 2.

Macam Tabel	α
Beban besar dengan tumbukan	0,6
Beban normal kontinyu	0,8
Beban normal tidak kontinyu	1
Beban ringan	1,2
Diputar tangan	1,5

Tabel 3.

Macam kualitet pengerjaan	a
Gigi dicor kasar	1,5
Gigi difris atau di "hobbing"	3
Gigi dikerjakan halus atau dari	
bahan buatan	10

Tabel 4. Bahan roda gigi

BAHAN	$\sigma b \left(\frac{N}{mm^2}\right)$	$\frac{\sigma b}{14,3}$
GG 195	40	2,8
GG 245	50	3,5
GG 510	90	6,3
Fe 490	100	7,0
Fe 590	120	8,4
Fe 690	140	10,0
G CuSn 12	70	5,0
Akulon		3,0

Tebal gigi b harus diambil tidak terlalu besar. Bila tebal gigi terlalu besar, terjadi kemungkinan, profil gigi tidak bersinggungan pada seluruh tebal, dan bila ini terjadi, dapat menyebabkan patah pada ujung gigi (gb. 10). Roda gigi yang dikerjakan halus dapat diambil lebih lebar dari pada roda gigi dengan profil kasar, juga ketelitian letak bantalan sangat menentukan.

Gambar 10.

Teknik Kerja Elemen dan Mekanika

Soal:
Apa fungsi roda gigi:
Lurus
Helix
Cacing Rack Payung

2. Jika roda gigi 1 punya jumlah 30, dan gigi 2 punya jumlah 45, berapa rasio perputarannya.

BAB IV

PULLEY

Pulley merupakan tempat bagi ban mesin/sabuk atau belt untuk berputar. Sabuk atau ban mesin dipergunakan untuk mentransmisikan daya dari poros yang sejajar. Jarak antara kedua poros tersebut cukup panjang, dan ukuran ban mesin yang dipegunakan dalam sistem transmisi sabuk ini tergantung dari jenis ban sendiri.

Sabuk/Ban mesin selalu dipergunakan dengan komonen pasangan yaitu puli. Dalam transmisi ban mesin ada dua puli yang digunakan yaitu Puli penggerak Puli yang digerakkan

Dasar bekerjanya pada transmisi adalah berdasarkan adanya gesekan saja. Yaitu gesekan dari sabuk atau puli. Sabuk biasanya meneruskan daya dari puli yang dipasang pada motor listrik,motor bakar, generatorlistrik kepuli pada alat – alat yang di gerakkan oleh motor-motor penggerak tersebut

Macam Ban Mesin

Sabuk Rata

Sabuk rata terbuat dari kulit 'kain, plastik, atau campuran (sintetik) Sabuk ini dipasang pada silinder rata dan meneruskan pada poros yang berjarak kurang dari 10 meter perbandingan transmisi dari 1:1 sampai 1:6

Sabuk Penampang Bulat

Sabuk ini dipergunakan untuk alat alat kecil, alat laboratorium yang digerakkan dengan motor kecil jarak antara kedua poros pendek 30 cm maksimum

Sabuk V

Sabuk ini mempunyai penampang trapesium sama kaki bahan terbuat dari karet permukaan dipeerkuat dengan pintalan lainBagian dalam sabuk diberi serat polister jarak anatar kedua poros dapat mencaoai 5 meter dengan perbandingan putaran 1 – 1 sampai 7 : 1

Kecepatan putara antara 10 sampai 20 m/detik Daya yang ditrasmisikan dapat mencapai 100 Hp

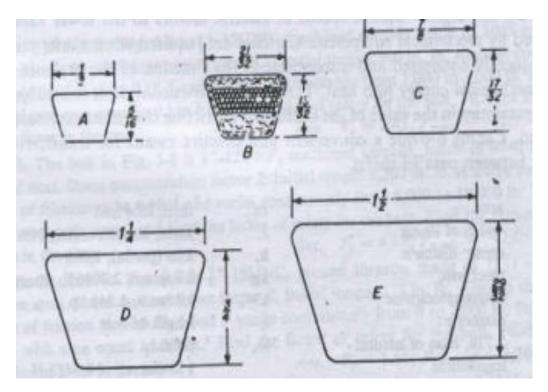
Sabuk Gilir

Merupakan penemuan baru dalam hal transmisisabuk.sabuk ini dapat meniadakan kekurangan pada transmisi sabuk yaitu ketepatan perbandingan putaran seperti pada roda gigi . Penggunaan pada mesin jahit, foto copy, computer

Pemilihan sabuk V

Beberapa tipe dalam pemilihan sabuk V anatara lain

Tipe A sabuk dengan lebar 13 x 9

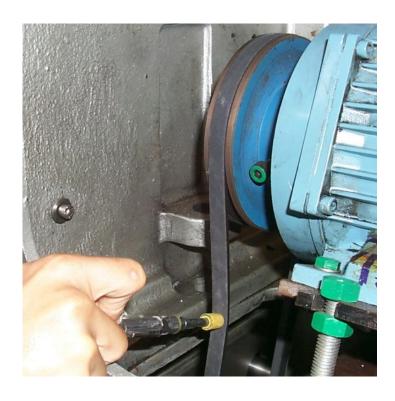

Tipe B sabuk dengan lebar 17 x 11

Tipe C sabuk dengan lebar 22 x 14

Tipe D sabuk dengan lebar 32 x 19

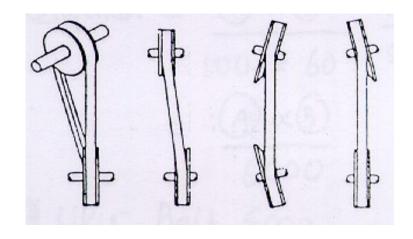
Tipe E sabuk dengan lebar 38 x 25

			Cross	Section			
A	В	C	*	В	С	D	E
27.3	DEPTH N	7 galaya	97.3	- A 14	98.9	NAME AND DESCRIPTIONS	-
32.3	To limb	BET ES	self fine	98.8	Name and	Bellevin.	
36.3	35.8	die sol	106.3	106.8	107.9	-	
39.3	39.8		113.3	113.8	114.9		
43.3	43.8	347	121.3	121.6	122.9	123.3	
47.3	47.8		129.3	129.8	130.9	131.3	
52.3	52.8	53.9	A	145.8	146.9	147.3	Actions
56.3	56.8		100	159.8	160.9	161.3	
61.3	61.8	62.9	100	174.8	175.9	176.3	
69.3	69.8	70.9		181.8	182.9	133.3	184.5
76.3	76.8	77.5		196.8	197.9	198.3	199.5
81.3	Selection of the	Trolleguis	6 Maily s	211.8	212.9	2:3.3	214.3
	82.8	82.9	Terrord Ballo	240.3	240.9	240.8	241.3
86.3	86.8	87.0	No.	270.3	270.9	270.8	271.0
91.3	91.8	92.9		300.3	300.9	300.8	301.0

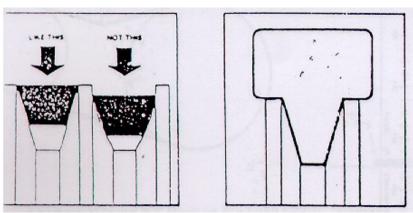


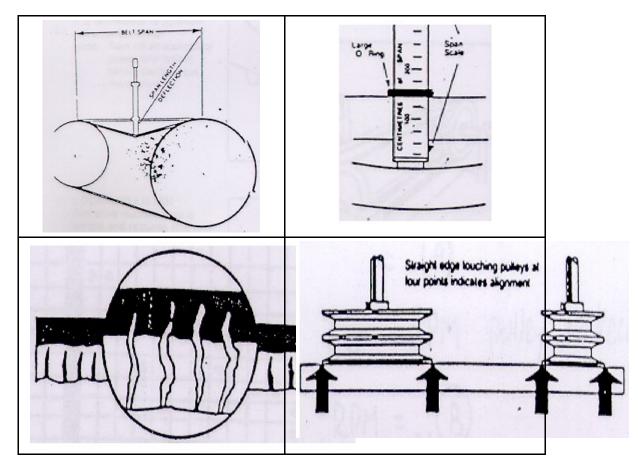
Tipe ini hanya berbeda dimensi penampangnya saja Pemilihan sabuk ini berdasarkan atas daya yang dipindahkan , putran motor penggerak putaran motor yang digerakkan, jarak poros, pemakaian sabuk

Sabuk V hanya bisa digunakan untuk menghubungkan **poros poros yang sejajar dengan arah putaran yang sama**. Tranmisi sabuk lebih halus suaranya bila dibanding dengan transmisi roda gigi atau ranyai


Ukuran diameter puli harus tepat , karena kalau terlalu besar akan terjadi slip karena bidang kontaknya lebih lebar/banyak. Kalau terlalu kecil sabuk akan terpelintir atau menderita tekukan tajam waktu sabuk bekerja

Kalau sabuk sudah terpaasang maka akan terjadi difleksi bagian atas (bagian menarik) Difleksi ini ada harga batasnya .Besar kecilnya tergantung juga oleh tegangan pada sabuk tersebut Diflek dianggap normal kalau besarnya 1,6 mm pada setiap 100mm panjang




Kesalahan pemasangan pada Ban/Belt pada puly

PERHITUNGAN SABUK DAN PULI SABUK DATAR

Pemindahan daya dengan sabuk

Sabuk adalah merupakan salah satu komponen transmisi (pemindahan daya) dalam pemesinan. Bentuk dan ukuran sabuk bervariasi sesuai dengan tujuan kegunaannya.

Selain sebagai pemindah daya atau transmisi, sabuk juga dapat berfungsi sebagai pembalik arah putaran. Untuk putaran yang searah, hubungan sabuk dengan hubungan lurus, sedangkan untuk pemindahan arah putaran, hubungan sabuk dengan di silang.

Pemindahan daya dengan sabuk dapat dibedakan:

- a. Pemindahan daya dengan sabuk datar
- b. Pemindahan daya dengan sabuk V
- Pemindahan daya dengan sabuk bergigi

Pemindahan daya dengan tali

Pemindahan daya dengan ban sabuk sendiri, dilihat dari arah putaran dari poros penggerak dan poros yang digerakkan dapat dibagi menjadi :

1. Sabuk terbuka.

Sabuk terbuka tanpa puli penegang.

Sabuk terbuka dengan puli penegang.

Sabuk terbuka yang menggerakkan beberapa poros.

2. Sabuk silang.

Sabuk silang

Sabuk silang tegak lurus:

tanpa puli penghantar

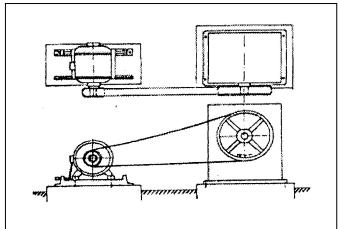
dengan puli penghantar

Keuntungan pemindahan daya dengan sabuk dibandingkan dengan transmisi lain.

Dapat terjadi slip pada beban lebih (over load), sehingga tidak menyebabkan kerusakan pada alat-alat transmisi, poros dan bantalan.

Dapat meredam goncangan dan kejutan.

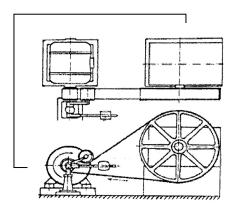
Dapat digunakan untuk memutar poros yang digerakkan dalam dua arah, tanpa mengubah kedudukan motor penggerak (pemindahan dengan sabuk bersilang).


Poros yang digerakkan dapat berkedudukan sembarang terhadap penggerak.

Pemindahan Daya dengan Sabuk Terbuka (Open-belt Drive)

Pemindahan dengan sabuk terbuka dipakai untuk pemindahan daya antara 2 buah poros sejajar atau lebih dan berputar searah. Karena pada sabuk terbuka mudah terjadi slip, maka pemindahan sistem ini dimaksudkan juga untuk pemindahan-pemindahan daya dimana tidak diperlukan perbandingan transmisi secara tepat.

a) Pemindahan daya dengan sabuk terbuka tanpa puli penegang
 Pemindahan dengan ban sabuk terbuka tanpa puli penegang, digunakan untuk pemindahan daya puli-puli besar dan perbandingan transmisi tidak terlalu besar.

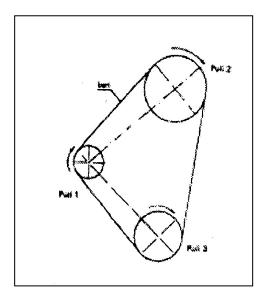


bar 1. Peminda-

han daya dengan sabuk terbuka tanpa puli penegang

Dengan perbandingan transmisi tidak terlalu besar, bidang gesek antara puli dengan sabuk lebih besar (sudut kontak menjadi lebih besar).

b) Pemindahan daya dengan sabuk terbuka dengan puli penegang pemindahan daya dengan sabuk terbuka dengan puli penegang, digunakan jika perbandingan transmisi besar dan jarak poros dekat (bidang singgung antara ban dengan puli kecil, karena puli penggerak kecil) atau jika diperlukan tegangan ban yang lebih besar.



Gambar 2. Pemindahan daya

Gam-

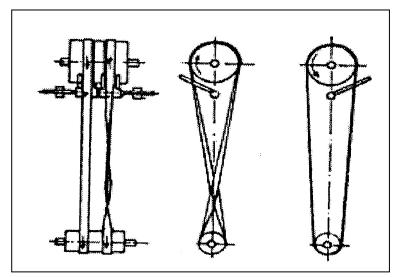
sabuk terbuka dengan

- a. Tanpa puli penegang
- b. Dengan puli penegang

Gambar 3. Pemindahan daya antara beberapa poros

c) Pemindahan daya dengan ban sabuk untuk beberapa poros, dengan/tanpa puli penegang Pemindahan daya dengan sabuk terbuka antara beberapa poros, digunakan jika diperlukan pemindahan daya dari satu poros penggerak kepada lebih dari satu poros yang digerakkan. Semua poros dipasang sejajar dan berputar searah. Puli penegang diperlukan jika dikehendaki bidang gesek antara sabuk dengan puli lebih besar, perbandingan transmisi lebih besar atau untuk menambah tegangan pada sabuk.

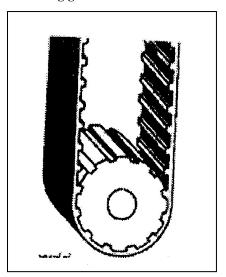
Pemindahan Daya dengan Sabuk Silang


Pemindahan daya dengan sabuk silang digunakan untuk poros-poros sejajar yang berputar berlawanan arah.

Pada bagian persilangan terjadi gesekan dan getaran antar bagian ban yang berjalan dengan arah yang berlawanan.

Untuk mengurangi getaran yang telalu besar, kedua poros ditempatkan pada jarak A maksimum (jarak A minimum \geq 20 b, dimana b = lebar ban) dan berputar dengan kecepatan rendah (v \approx 15 m/s).

Slip pada sabuk silang lebih kecil, dibandingkan dengan pada sabuk terbuka, karena bidang singgung dengan puli lebih besar.



Gambar 4.

Pemin-

dahan daya dengan sabuk silang

Pemindahan dengan Ban Sabuk Bergigi

Gambar 5. Ban sabuk

bergigi

Kekurangan ban sabuk bergigi ini hanyalah kecenderungan gigi dari ban keluar dari salurannya pada puli, jika ban kurang tegang. Pemindahan dengan ban bergigi banyak digunakan pada mesin-mesin kayu portable, mesin jahit dan pada banyak jenis mesin lainnya.

DASAR-DASAR PERHITUNGAN PEMINDAHAN DAYA DENGAN SABUK

Kalau tidak terjadi slip antara ban dan puli, kecepatan keliling kedua puli sama :

 $v = \pi D_1.n_1 = \pi D_2.n_2$ (1)

v = kecepatan keliling kedua puli

D₁ = diameter puli penggerak

D₂ = diameter puli yang digerakkan

Teknik Kerja Elemen dan Mekanika

 n_1 = putaran puli penggerak

n₂ = putaran puli yang digerakkan

Dari rumus diatas dapat dihasilkan persamaan-persamaan sebagai berikut :

$$D_1.n_1 = D_2.n_2$$

$$\frac{\mathbf{n}_1}{\mathbf{n}_2} = \frac{\mathbf{D}_2}{\mathbf{D}_2} \tag{2}$$

Perbandingan transmisi

atau:

$$\frac{n_1}{n_2} = \frac{D_2}{D_2}$$
i = (3)

Jika daya yang dipindahkan P, maka momen puntir yang terjadi :

Pada puli penggerak:

$$T_1 = \frac{\frac{1}{2\pi} \cdot \frac{P}{n_1}}{(4)}$$

n₁ = putaran puli penggerak

P = daya motor

Gaya keliling pada puli penggerak:

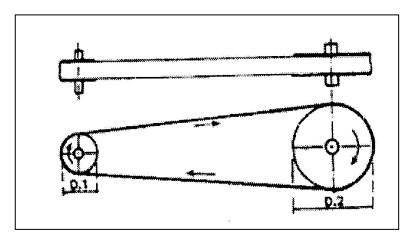
$$F_{1} = \frac{\frac{T_{1}}{r_{1}}}{r_{1}}$$

$$F_{2} = \frac{D_{1}}{2}$$

$$r_{1} = \frac{D_{1}}{2}$$

Pada puli yang digerakkan jika tidak ada kehilangan daya :

$$T_2 = \frac{\frac{1}{2\pi} \cdot \frac{P}{n_2}}{(6)}$$


 n_2 = putaran puli yang digerakkan/detik

Gaya keliling pada puli yang digerakkan :

$$F_{2} = \frac{\frac{T_{2}}{r_{2}}}{\frac{D_{2}}{2}}$$

$$r_{2} = \frac{D_{2}}{2}$$

Gambar

6. Sudut

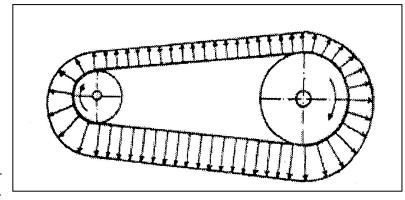
kontak dan sabuk terbuka tanpa puli penegang

Sudut kontak ----- θ_1 terkecil pada puli terkecil (gambar 6) :

$$\theta_1 = \pi - 2\alpha = \pi - \frac{D_2 - D_1}{A}$$
 radian.

$$\theta_1$$
 = 180° - 2 α = 180° - 2 are sin $\frac{D_2 - D_1}{2A}$ (8)
A = jarak dua poros

Panjang sabuk yang diperlukan, dihitung dengan rumus:


$$L = \frac{\pi}{2} (D_1 - D_2) + 2A + \frac{(D_2 - D_1)^2}{4A}$$
(9)

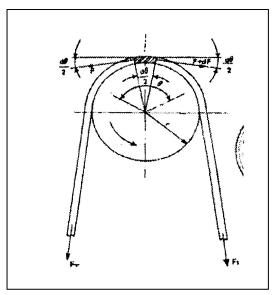
 D_1 ; D_2 dan A dalam

Rumus-rumus pendekatan untuk sudut kontak U_1 dan panjang ban L dari empat macam sistem pemindahan dengan ban, diberikan pada tabel l.

Pada pemindahan dengan ban sabuk terbuka, biasanya ban sebelah bawah ialah bagian yang mendapat tarikan lebih besar dan bagian sebelah atas bagian yang kendor.

Grafik tegangan yang terjadi sepanjang ban diperlihatkan pada gambar 7.

Gam-Graf-


gangan sabuk terbuka tanpa puli penegang

Perhitungan Kekuatan Ban Sabuk

Untuk menghitung kekuatan sabuk; harus dihitung gaya-gaya tegang yang bekerja pada sabuk.

Pada bagian penampang sabuk (gambar 8), bekerja gaya-gaya sebagai berikut :

Gambar 8. Gaya-gaya tegangan pada sabuk

 F_T = gaya tarik pada bagian sabuk yang tegang (gaya sentrifugal diabaikan)

 F_t = gaya tarik pada bagian sabuk yang kendor (gaya sentrifugal diabaikan)

f = koefisien gesek sabuk dengan puli

b = lebar sabuk

t = tebal sabuk

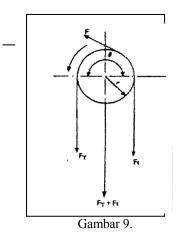
 $w = berat sabuk/mm^3$

 θ = sudut kontak

v = kecepatan keliling sabuk

g = gravitasi bumi 9.81 m/s^2

Tabel: I Sudut kontak dan panjang pada pemindahan daya ban sabuk


Sis	Sistem pembuka tanpa rol penegang.	Sistem terbuka dengan rol (puli) penegang.	Sistem ban bersilang.	Sistem ban bersilang tegak lurus.
0 0	(3)			
$\theta_1 \approx 180^\circ$ -	$\theta_1 \approx 180^{\circ} - \frac{\left(D_2 - D_3\right)}{A} 60^{\circ}$	$\theta \approx 180^{\circ} - \frac{D_{2} - D_{3}}{2A}$ $\frac{(D_{1} + D_{p} - 2E)}{2Ap}$	$\theta \approx 180^{\circ} + \frac{\left(D_2 + D_3\right)}{A} 60^{\circ}$	$\theta \approx 180^{\circ} + \frac{D_1}{A} 60^{\circ}$
L = 2A +	$L = 2A + \frac{\pi}{2} (D_2 + D_4) +$	L = (A)		
$\frac{\left(D_2 - D_3\right)^2}{4 A}$)²			

Teknik Kerja Elemen dan Mekanika

Berdasarkan kesetimbangan gaya-gaya dan penurunan matematik diluar jangkauan, didapat persamaan sebagai berikut :

$$F_T = F_1 \,\theta^{f\theta} \qquad (11)$$

 $F_T + F_t$ = gaya tekan pada poros

e = bilangan logaritma napir = 2,7183

 $\theta = \theta_1$ sudut kontak terkecil pada puli penggerak

Untuk memudahkan, dalam praktek dianggap sudut kontak kecil

$$\theta_1 = 180^{\circ}$$

dan

$$e^{f\theta} = 2$$
,

sehingga

$$F_T = 2F_t$$

Dengan demikian pada bagian ban yang kendor bekerja gaya tarik F_t = F dan pada bagian yang tegang mendapat gaya tarik F_T = 2F

Gaya tegang terbesar F_T pada ban harus diperiksa apakah cukup kuat ditahan oleh penampang melintang bahan ban dengan tebal t dan lebar b.

$$FT \leq A.\sigma_t = (b.t) \sigma t$$
 (12)

 σ_t = tegangan tarik yang diijinkan dari bahan ban

A = luas penampang melintang ban = b.t

Umumnya $\sigma_t = 25 \div 40 \, (\text{N} / \text{mm}^2)$

Harga σ_t untuk beberapa jenis bahan sabuk dapat dilihat pada tabel II.

Jika harga per mm lebar sabuk = p, lebar ban = b dan gaya tarik efektif (gaya tarik yang menyebabkan pemindahan gaya P) = F, maka :

$$F = b.p (13)$$

p = gaya per mm lebar sabuk

b = lebar sabuk

Teknik Kerja Elemen dan Mekanika

Daya P = F.v v = kecepatan keliling ban m/s

Atau
$$F = \frac{P}{v} \qquad \frac{p}{v \cdot p}$$

$$(14)$$

Tabel II memperlihatkan harga p sehubungan dengan kecepatan keliling v dan diameter puli. Harga-harga pada tabel diatas ialah untuk sabuk tunggal dengan pemasangan horizontal dan tebal sabuk $5 \div 6$ mm, tanpa jalinan penguat dalam sabuk. Untuk sabuk yang mempunyai jalinan penguat, harga diatas ditambah 25%, untuk pemasangan vertical ditambah 20%, untuk sabuk ganda 20% dan untuk sabuk yang berjalan lambat dapat ditambah 20 sd. 50 %.

Tabel II: Harga p dalam Newton/lebar sabuk dalam mm

	Diameter puli kecil	Gaya p/mm lebar sabuk yang efektif pada kecepatan keliling sabuk v (m/s)								
		3	5	8	10	15	20	25	30	
В	mm 100	N/mm	N/mm	N/mm 3	N/mm	N/mm 3	N/mm 3	N/mm	N/mm	
a n	200	2 3	2,5 4	4,5	3 5	5,5	6	3,5 6	3,5 6,5	
t	300	4	4 5 6 7	5.5	6	6.5	7,5	8	8,5	
u	400	4 5	6	5,5 6,5	7	6,5 8 9	9	9,5	10	
n	500	6 8	7	7,5	8	9	10	10,5	11	
g	750	8	9	9,5	10	11	12	12,5	13	
g a	1000 1200	9 9,5	10 10,5	10,5 11	11 11,5	12 12,5	13 13	13,5 13,5	14 14	
1	1500	10	11	11,5	12	13	13,5	14	14,5	
	2000	11	12	12,5	13	13,5	14	14,5	15	
В	300	5	6	6.5	7	8	9	9.5	10	
a	400	6.5	8	8.5	9	10	11	11.5	12	
n	500 600	8 9.5	9.5 11	10 11.5	11 12	12 13	13 15	13 15.5	13.5 16	
g a	750	9.3	12.5	13	14	15	17.5	13.3	18.5	
n	1000	13	15	16	17	19	21	21.5	22	
d	1500	15	17	18	19	21	23	24.5	26	
a	2000	17	19	20	21	23	25	26.5	28	

Contoh soal:

Motor penggerak dengan daya = 15 kW, memutar puli suatu pesawat dengan kecepatan = 2 putaran/s.

Diameter puli = 600 mm. Faktor $e^{f\theta} = 2$

Hitunglah gaya tarik pada kedua bagian sabuk.

Penyelesaian.

$$T_{1} = \frac{1}{2\pi} \cdot \frac{P}{n_{1}}$$

$$= \frac{1}{2.3,14} \cdot \frac{15kW}{2/s} = \frac{1}{2.3,14} \cdot \frac{15000 Nm/s}{2 s}$$

$$\approx 1200 Nm$$

$$\approx 1,2 kNm$$

Gaya tarik rata-rata pada ban :

$$\frac{T_1}{r_1} = \frac{1.2 \ kNm}{0.3 \ m} = 4 \ kN$$
F =

Karena
$$e^{f\theta} = 2$$

$$F_T = 2 F$$

Jadi gaya tarik pada bagian sabuk yang kendor

$$F = F_t = 4 kN$$

Dan pada bagian yang tegang

$$F_T = 2 F_t = 8 kN$$

Teknik Kerja Elemen dan Mekanika

Lembar Soal Evaluasi

Sebuah sabuk dapat memindahkan daya dari motor penggerak dengan daya 20 kW.

Kecepatan keliling ban v= 15 m/s. Sudut kontak $\theta = 120^{\circ}$

Koefisien gesek f = 0.2

Hitunglah gaya tegang pada ban (F_T dan F_t).

Sabuk tunggal memindahkan daya dari motor penggerak sebesar 7,5 kW.

Diameter puli penggerak D_1 = 300 mm dan berputar dengan kecepatan n_1 =. Berapa lebar ban yang diperlukan.

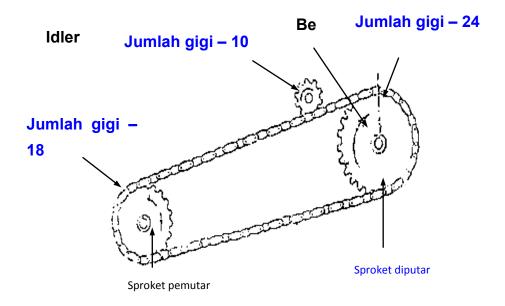
BAB V RANTAI

RANTAI DAN SPROKET

RANTAI DAN SPROKET

Rantai berfungsi untuk memindahkan tenaga dari suatu bagian kebagian lain. Prinsip kerja hampir sama dengan pulley dan ban mesin.

Kelebihan:

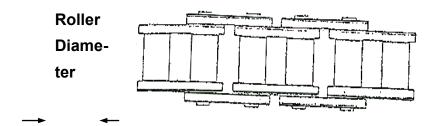

Kalau rantai dan sproket tidak aus, tidak terjadi slip.

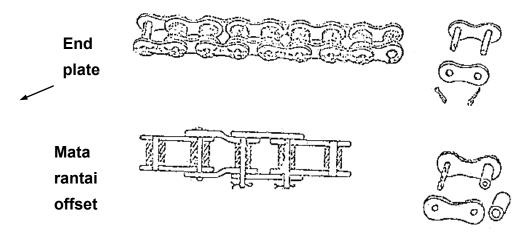
Dengan daya yang sama, rantai dan gigi bisa lebih kecil dibandingkan dengan pulley dan ban mesin

Rantai tidak rusak karena minyak atau gemuk. Kekurangan :

Tidak bisa dipakai untuk putaran tinggi karena bunyinya terlalu keras.

Cara menghitung kecepatan putaran dan jumlah gigi.




Figure 4-2. Driver & Driven Sprocket

$$\begin{array}{cccc} n1 = 100 \text{ rpm} & n2 = ? \\ z1 = 18 \text{ gigi} & z2 = 24 \text{ gigi} \end{array}$$

$$n1 = 100 \text{ rpm} \circ & \text{Per menit akan ada } 100 \text{ x } 18 = 1800 \text{ mata rantai yang} \\ z1 = 18 \text{ gigi} & \text{melalui setiap titik} \end{array}$$

$$z2 = 24 \text{ gigi} \\ n2 = \underbrace{1800}_{24} = 75 \text{ rpm} \\ z3 = 10 \text{ gigi} \\ n3 = \underbrace{1800}_{10} = 180 \text{ rpm} \end{array}$$

Jenis rantai:

Rantai roll: terdiri dari beberapa set ranta

Measurements of a Chain Roller

Kalau rantai yang mau disambung tanggung dipergunakan mata rantai offset

4-5. Connecting Links

untuk beban yang tinggi dipajai rantai ganda yang mempunyai mata pen 2 kali panjang mata pen rantai tunggal

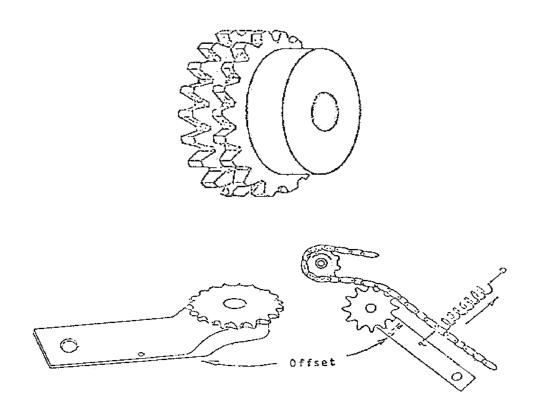


Figure 4-8. Multiple-Stand Chain and Sprocket

Cara lain untuk menghindari dari kekendoran rantai dipergunakan penegang rantai

PEMELIHARAAN

Pelumasan

Untuk rantai-rantai dalam bak pelumas:
Periksa secara teratur permukaan minyak didalamnya
Ganti minyak pelumas tersebut menurut petunjuk yang diberikan pabrik
Pada saat pengurasan bak dicuci bersih
Bersihkan dengan minyak tanah
Isi minyak pelumas baru

Untuk rantai yang tidak direndam Secara periodik dilumasi, salah satu cara dengan mempergunakan kwas atau sikat yang direndam dalam minyak pelumas.

Untuk mengontrol kurang tidaknya, dengan melihat pada sambungan ada warna coklat atau tidak.

Pembersihan:

Lepaskan rantai
Rendam dalam minyak tanah hingga kotoran lepas
Buang minyak tanahnya
Rendam lagi dalam minyak pelumas
Gantungkan sehingga minyak yang berlebihan habis
Baru pasang kembali rantai

Kerusakan:

Kerusakan terjadi karena adanya keausan pada pen dan bus, sehingga rantai menjadi mulur

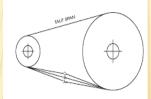
Sproket sudah aus Jika plat rantai yang aus berarti adanya gesekan dengan bagian-bagian lain atau pemasangan tidak lurus.

Perlu diperhatikan:

Sebelum dibuka sambungan, putar sehingga terletak pada sproket, untuk mengurangi tarikan dengan demikian pembukaan sambungan lebih mudah.

Sebelum memotong rantai yang dikeling, kedua pennya harus dibuka dahulu, sedemikian rupa sehingga tidak merusak mata rantai.

Janganlah menyambung mata rantai baru kedalam rantai yang sudah aus karena setiap kali mata rantai baru bertemu dengan sproket, akan menimbulkan goncangan


Rantai baru janganlah dipakai pada sproket yang sudah aus.

Jangan menyambung potongan rantai tua dengan yang baru, atau mencampur rantairantai dari pabrik yang berlainan.

Proper Chain Tension: It should be expected that new chains will elongate slightly more during the first few days of service than in the months of subsequent operation. This is due to the "running-in" of the chain which removes minute imperfections from the surfaces of the pins and bushings. Diamond chains are pre-stressed prior to shipment to remove the majority of this "run-in" but some slight amount should still be expected. Because of this, it is good practice to establish and adjust center distances or idlers for an initially snug-fitting chain. After the initial run-in period, the drive should always be adjusted so that there is some degree of slack in the unloaded section of chain. This slack is very important as it allows the pin/bushing joint to relubricate itself prior to entering the working or loaded portion of the drive.

Dimensions in inches

Drive Tangent Length Between Sprockets									
Center-Line	5	10	15	20	30	40	60	80	100
Horizontal to 45	0.25	0.50	0.75	1.00	1.50	2.00	3.00	4.00	5.00
Vertical to 45	0.12	0.25	0.38	0.50	0.75	1.00	1.50	2.00	2.50

BAB VI

POROS

Pengertian Umum : Yang dimaksud sebagai poros adalah batang logam berpenampang lingkaran yang berfungsi untuk memindahkan putaran atau mendukung sesuatu beban dengan atau tanpa meneruskan daya.

Poros ditahan oleh dua atau lebih bantalan poros atau pemegang poros, dan bagian berputar yang mendukung poros : roda daya (Fly Wheel), roda gigi, roda ban, roda gesek dll

Fungsi Poros

Poros pendukung Poros transmisi Poros gabungan pendukung dan transmisi

Teknik Kerja Elemen dan Mekanika

Melihat keadaan poros

Poros lurus

Poros engkol

Poros Fleksibel

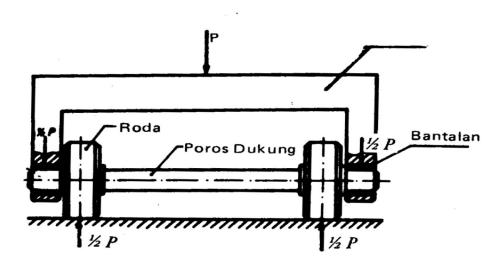
Poros pejal

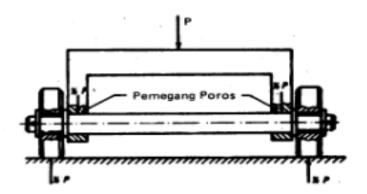
Poros berlobang

Poros bentuk tidak tentu (poros Nok)

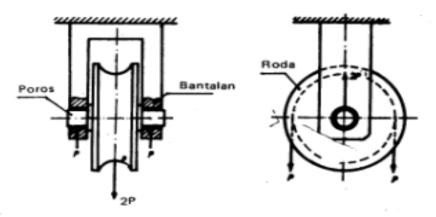
Melihat arah gaya

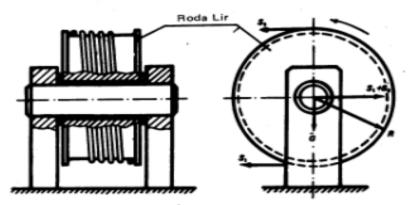
- Poros radial, gaya-gya yang didukung bekerja tegak lurus sumbu poros
- Poros aksial, gaya-gaya yang bekerja searah dengan sumbu poros
 Poros dengan gaya arah aksial dan radial


Melihat gerak/putaran


1. Poros diam, poros dipegang oleh pemegang poros, sedangkan roda berputar padanya

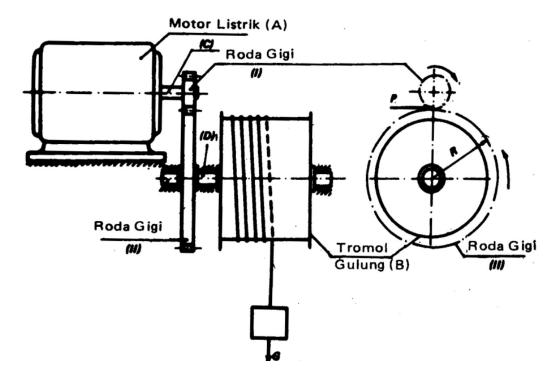
Poros berputar (putaran searah , bolak-balik atau putaran sebagian)


POROS DUKUNG

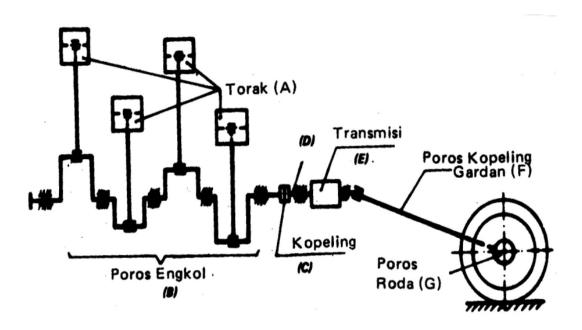


Poros dipegang tetap olch pemegang poros dan roda berputar pada tap poros.

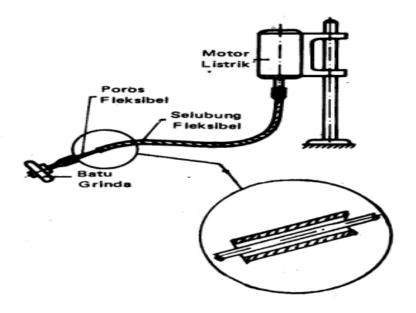
Poros berputar dengan roda takel, Beban dukung 2P = jumlah gaya yang menggantung pada tali takel + berat roda dan poros.

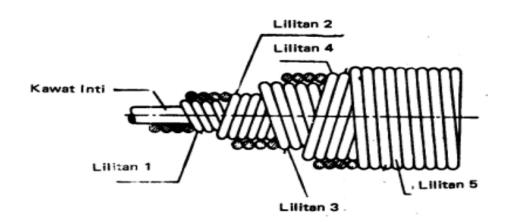


Poros dukung tromol; tromol berputar pada poros.

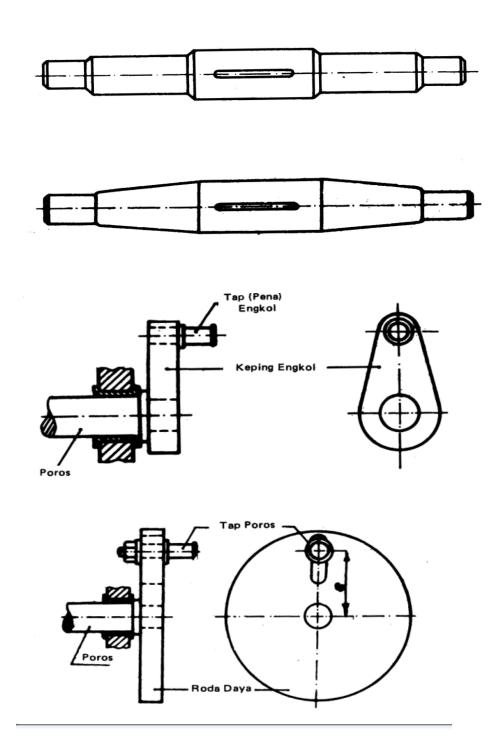

Beban dukung poros = resultan gaya pada tali + berat tromol dan poros.

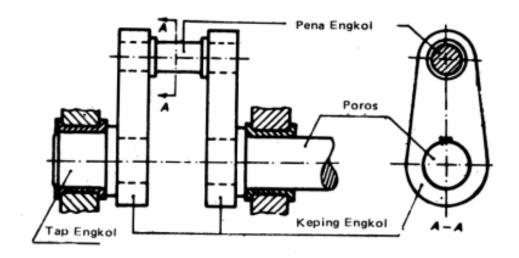
POROS TRANSMISI

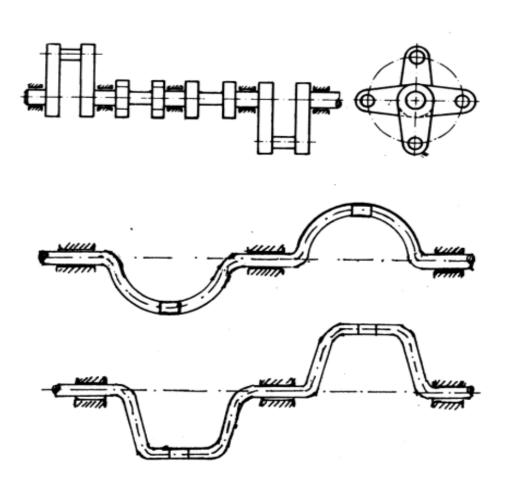



POROS TRANSMISI

POROS FLEKSIBEL



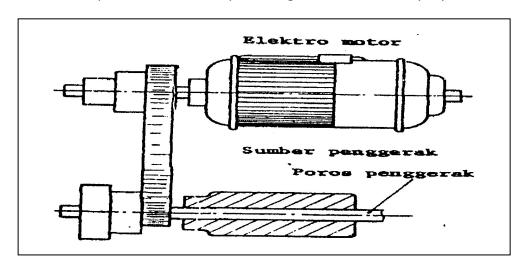




POROS DUKUNG TRANSMISI

PERHITUNGAN POROS

Poros / Shaft


Adalah sebatang benda, umumnya mempunyai penampang silindris dan terbuat dari logam, yang digunakan untuk memindahkan putaran yang berbeban.

Poros dan roda diikat dengan kuat dan teguh sehingga akan selalu berputar bersama-sama. Poros tersebut akan mengalami putaran / torsi akibat putaran, dan bengkokan / lengkung akibat dari beban yang diterima.

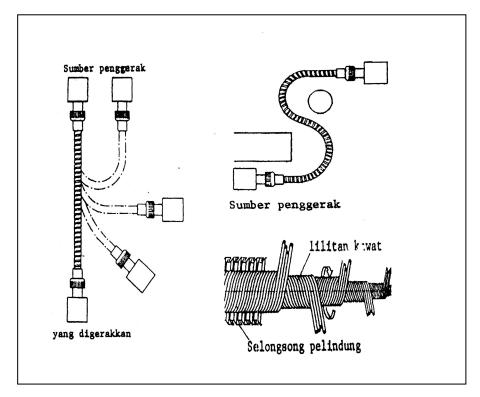
Poros yang berfungsi semacam ini disebut poros pemindah atau poros penggerak.

Macam-macam Jenis Poros pemindah/Shaft

 Poros pemindah pejal, paling seringa kita jumpai atau bahklan hampir setiap poros umumnya pejal. Tetapi ada juga poros yang ber-rongga (hollow shaft) semacam pipa yang tujuannya meringankan konstruksi berat poros sendiri, walaupun mungkin lebih mahal biayanya.

2. <u>Poros fleksibel</u>:

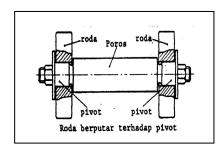
Poros penggerak fleksibel ini pada waktu bergerak dapat dibengkokkan atau dipasang pada posisi yang sulit dicapai dengan poros penggerak biasa, tetapi "flexible shaft" ini hanya untuk menggerakkan beban atau gaya yang ringan.

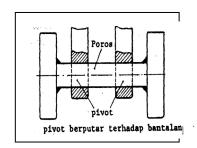

Poros penggerak fleksibel ini dibuat dari kawat pegas yang dililitkan dengan masing-masing lapisan lilitan itu berlawanan arahnya. Kemudian untuk melindungi kawat itu bagian

terluar diselubungi dengan selongsong yang fleksibel pula. Contohnya seperti pada kran minyak pendingin atau dengan selaput karet.

Poros jenis ini yang berdiameter kecil, mampu berputar hingga 20.000 rpm, sedang untuk diameter yang normal kira-kira 3600 rpm.

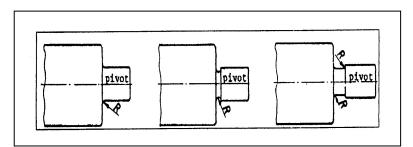
Pelumasan pada poros jenis ini harus lebih diperhatikan.

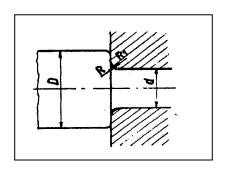


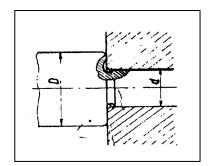

Contoh penggunaan: mesin gerida yang dapat dipindah-pindah, speedo meter.

3. Privot / Leher Poros / Tap:

Privot atau tap adalah bagian dari poros yang menumpu atau yang berhubungan langsung dengan roda, yaitu sumbu putaran roda, atau poros yang berputar pada bantalan lubang roda.

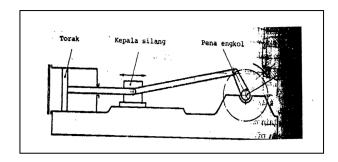


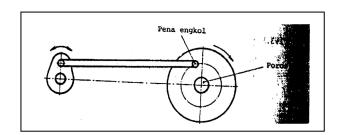

Selain dari kedua contoh diatas, ada juga hubungan perputaran roda pada privot yang menggunakan perantara/bantalan. Biasanya dibuat dari kuningan atau perunggu.


Radius atau alur / celah pembebas

Setiap ada perbedaan diameter pada suatu poros, dari diameter yang besar ke kecil atau sebaliknya harus diberi radius, yang mungkin radius biasa atau jenis "under cut" (celah pembebas).

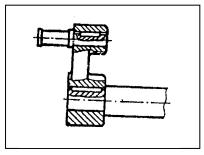
Contoh hubungan undercut/radius dengan pasangannya.

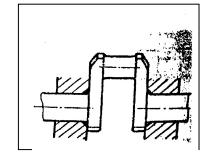




4. Poros Engkol (Crank shaft)

Poros engkol adalah poros penggerak yang eksentrik, yang digunakan untuk mengubah gerak putar menjadi gerak lurus atau sebaliknya, atau gerak putar tidak penuh (periodik).

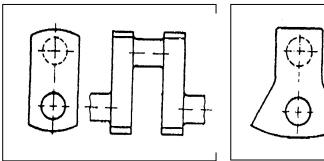


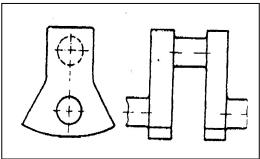

Pada waktu poros itu sedang bekerja akan mengalami tegangan puntir dan bengkok.

Menurut jenisnya pros engkol dibagi:

Poros engkol tunggal

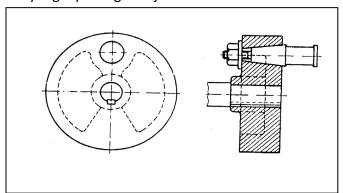
Poros engkol majemuk


Pembuatan poros engkol


Pada pembuatan poros-poros engkol yang kecil, terdiri dari satu benda yang dibentuk dengan jalan dibubut.

Tetapi untuk poros-poros engkol yang besar-besar dengan jalan dituang karena selain lebih mudah, untuk menghemat pemakaian bahan, dan menghemat biaya pembuatannya.

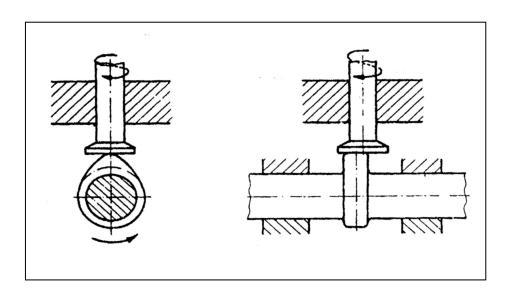
Dan bilamana pembuatan pipi-pipi engkol itu harus diberi bobot, yang digunakan sebagai balansir, akan lebih mudah dengan cara dituang.



Tanpa balansir

Dengan balansir

Pembuatan cakera engkol, engkol tunggal dapat terdiri dari dua bagian benda yang dipasang menjadi satu.



Poros Bubungan (Cam/Nok as):

Sebatang poros, yang mempunyai bagian tertentu yang tidak silinder, yaitu mempunyai hubungan/cam, yang digunakan untuk menggerakkan sesuatu, misalnya katup.

Karena poros hubungan itu berputar terus, maka katup itu akan selalu bergerak secara periodik.

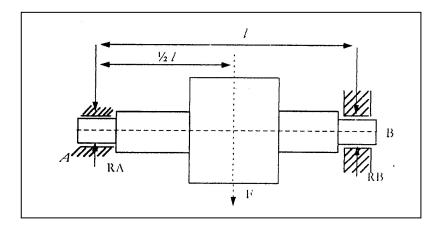


Adalah poros penghubung/pembantu poros penggerak tetapi terdiri dari 2 bagian yang tidak satu sumbu.

Misalnya gerakan putaran yang menyudut, parallel.

Pemindahan putaran menyudut : single joint/ double joint

Pemindahan putaran parallel : double joint.



DASAR-DASAR PERHITUNGAN POROS

1. Poros dukung dengan 2 tumpuan:

Perhitungan poros dukung terutama didasarkan pada tekanan permukaan leher poros / tap / privat, tegangan lentur pada penampang normal tap poros yang mendapatkan momen lentur terbesar.

Besar gaya reaksi RA dan RB dihitung berdasarkan keseimbangan momen Σ

$$MA = 0 dan \Sigma MB = 0$$

Jika F ditengah-tengah, maka RA = RB = ½ F.

Jika berat poros diperhitungkan, maka:

$$R_A = R_B = \frac{1}{2} (F + F_P)$$
 (kg)

R_A = Reaksi pada tumpuan A (kg)

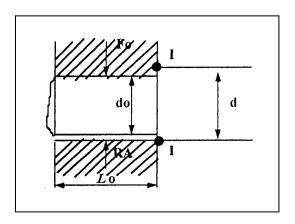
R_B = Reaksi pada tumpuan B (kg)

F = Beban dukung (kg)

 F_P = Beban poros (kg)

Tekanan bidang pada bantalan:

Fo =
$$RA = RB dan k = \frac{Fo}{lo.do}$$


Fo = Gaya pada permukaan bantalan kg

lo = Panjang leher poros cm

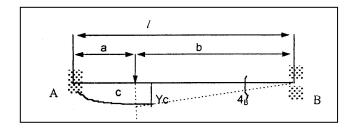
do = Diameter leher poros cm

k = Tekanan bidang pada leher poros Kg/cm²

2. Tegangan lentur / tegangan bengkok :

Pada penampang I – I

$$\sigma I = \frac{\frac{\text{Fo.Lo}}{\pi}}{16 \cdot \text{do}^3}$$


$$\kappa g / \text{cm}^2$$

Untuk keamanan tegangan lentur yang diijinkan harus lebih kecil dari tegangan lentur yang terjadi.

σ I = Tegangan lentur pada penampang I.I kg/cm²

 $\sigma I = Tegangan lentur yang dijinkankg/cm²$

Agar jangan terlalu besar lenturan, maka jarak antara leher poros tak boleh terlalu besar / \leq 100 d

$$\Sigma M_A = o \rightarrow R_B = \frac{F.a}{b} \text{ kg}$$

$$\Sigma M_B = o \rightarrow R_A = \frac{F.b}{a}$$
 kg

Momen lengkung terbesar di titik C

$$M_{lc} = \frac{F.a.b}{l}$$
 Kg cm

Sudut lenturan : $\phi_A = (l + b)$ radial

$$\phi_{B} = \frac{F.a.b}{6./.E.l}$$
 (I + a) radial

Lenturan titik C

$$\phi_{c} = \frac{F.a.b}{6./.E.1} (l^2 - a^2 - b^2)$$

E = Modulus elastisitas bahan kg/cm² misalnya E baja = 2,1.106 kg/cm²

I = Momen inersia cm⁴

$$I = \frac{\pi}{64} D_0^4$$

Bahan Poros dan Tap

Poros umumnya dibuat dari baja yang kekuatan puntir dan kekuatan lenturnya cukup tinggi, tahan terhadap beban berubah-ubah dan permukaannya dapat dilicinkan dengan mesin perkakas (gerinda/polis).

Syarat lain yang diperlukan bagi baja tersebut ialah memiliki struktur berbutir homogen, tahan lelah karena getaran dan tidak mudah retak.

Baja karbon yang dihasilkan dari pengerolan panas dan melalui proses penormalan (normalizing) atau pelunakan (annealing) banyak dipakai untuk poros.

Poros yang memerlukan kekuatan dan kekerasan tinggi dibuat dari baja karbon biasa (plain carbon steel) dengan kandungan karbon 0,2 sampai dengan 0,3 %. Baja karbon jenis ini setelah dikerjakan pada mesin perkakas dikeraskan dan ditemper. Baja karbon dapat dikeraskan, jika kadar karbon lebih dari 0,3 %.

Poros yang mendapat beban bolak-balik dan memerlukan kekuatan seperti halnya poros motor-motor, biasanya yang dikeraskan hanya bagian permukaannya, sedangkan bagian dalam tetap dengan sifat-sifat asalnya. Dengan demikian bagian dalam tetap liat, sedangkan bagian luar cukup keras.

Pengerasan bagian permukaan disebut penyemenan yang dapat dilakukan antara lain dengan penyemenan karbon (carbonizing), pelapisan cyanida atau nitrida. Pengerasan permukaan ini umumnya terbatas pada bagianbagian yang memerlukan kekerasan saja, seperti permukaan leher poros (tap poros).

Poros yang harus tahan terhadap beban berubah-ubah dan beban tumbukan (inpack and shock load), dibuat dari baja paduan dengan sifat-sifat lebih baik dari baja karbon, kemungkinan retak dan terjadinya tegangan sisa (ressidual stress) lebih kecil. Banyak digunakan baja paduan nikelkhrom, baja khrommolibden dan baja khrom nikel molibden.

Pada tahun-tahun belakangan ini ada kecenderungan membuat poros dan tap dari besi cor liat, yaitu besi cor yang diperbaiki sifat-sifatnya. Hal ini mengingat besi cor lebih baik dalam peredaman getaran dibandingkan dengan baja.

Tabel dibawah ini memberikan beberapa data tentang bahan-bahan poros yang dijelaskan diatas.

TABEL : Data-data baja karbon dan baja paduan untuk poros dan tap st)

_										_				_							_		_
	Keterangan	Mampu me- sin a% berarti kemampuan dikerjakan pada mesin- mesin perka- kas = a% dari kemampuan baja Standard (baja X 1112). AISI = Ameri- can Iron And Steel Insti- tute.																					
Mam-	pu Me- sin (%)		% 55	22 %	27 %	21 %			100%			67 %	36%				61%				% 55		
asan	RC				10	12	20		9			12	20				12			ŀ		-	
Kekerasan	HBR		101	137	179	200	233		140			151	223			179	187			183	254	260	
Kekuatan te-	gangan mulur u (kg/cm²)		2320	3600	4400	4800	5200		3200			4800	0009			4160	5040			5120	7120	7360	
Kekuatan te-	gangan tarik pt (kg/cm²)		4080	2360	7000	7900	8600		5360			0009	8800			7280	7200			7280	10080	10300	
% Molibden	(Mo)															0,2 + 0,3	0,15 + 0,25			0,15 + 0,25	0,15 + 0,25	0,2 + 0,3	
% Nikel	(NI)							-				1,1+1,4	1,1+1,4				-			0,4+0,7	0,4+0,7	0,4+0,7	
% Chronium	(cr)							-				0,55+0,73	52'0 + 55'0			0,4 + 0,6	0,8+1,1			0,4 + 0,6	0,4 + 0,6	0,4 + 0,6	
% Bel-	erang (S)		50'0	50'0	50'0	50'0	50'0		0,16+0,23								-			,			
% Mangan	(MIn)		9'0+8'0	9'0 + 8'0	6'0+9'0	6'0 + 9'0	6'0 + 9'0		00'1+1'00			0,4+0,6	6'0 + 2'0			6'0 + 2'0	0,75 + 1,0			6'0 + 2'0	0,15 + 1,0	0,15 + 1,0	
% Karbon	(c)		0,80+0,13	0,18+0,23	0,32+0,38	0,43+0,3	9,55+0,65		0,08+0,13			0,13+0,18	0,38+0,43			0,17+0,22	0,38+0,43			0,18+0,22	0,38+0,43	0,4+0,45	•
Jenis menurut	Standard AISI	1. Baja Karbon biasa	C1010	C1020	C1035	C1045	C1060		2. Baja potong cepat X 1112		3. Baja Paduan — Baja Nikel chrom	A 3115	A 3140		- Baja chrom molibden	A4119	A 4140	- Baja Nikel	chrom molibden	A 8620	A 8640	A 8742	

Poros dengan Bahan Puntir (Poros Transmisi)

Karena daya yang diteruskan oleh pros transmisi menimbulkan puntir pada penampang normal poros terjadi tegangan puntir. Besar momen puntir yang dapat ditahan poros pada batas yang aman, dinyatakan dengan rumus :

Mp = Wp.
$$\sigma$$
 p (kg cm)

Mp = momen puntir (kg cm)

Wp = momen tahanan puntir (cm³)

p = tegangan puntir yang diizinkan dari bahan poros (kg/cm²)

Untuk poros pejal:

$$Wp = \frac{\frac{lp}{r} = \frac{\pi}{32}d^4 = \frac{\pi}{16}d^3 \approx 0,2 d^2(cm^3)}{\frac{d}{2}}$$

$$d = \text{diameter poros (cm)}$$

Untuk poros bolong:

$$Wp = \frac{\pi}{16} \frac{(d^4 - d_0^4)}{d} \approx 0.2 \frac{(d^4 - d_0^4)}{d} (cm^3)$$

d = diameter luar poros (cm)

 d_0 = diameter lubang poros (cm)

Momen puntir yang bekerja pada poros menyebabkan pula terjadinya sudut puntir. Besar sudut puntir yang terjadi:

$$\varphi p = \frac{\frac{Mp.1}{G.1p}}{G.1p} \text{ (radial)} \quad \text{atau}$$

$$\varphi p = \frac{\frac{Mp.1}{G.1p} \times \frac{180^{\circ}}{\pi}}{\pi}$$

Untuk poros transmisi sudut puntir yang diizinkan umumnya:

$$\phi p \le \frac{1}{4}$$
 m panjang poros

Hubungan momen puntir Mp dengan gaya N dan putaran n.

Daya yang diteruskan poros karena momen puntir Mp tiap putaran n :

$$U_1 = Mp 2\pi.n$$
(kg cm/menit)

n = Jumlah putaran/menit (dalam rpm dan ppm)

$$= \frac{Mp.2\pi.n}{60}$$
 (kg cm/detik)

Jika daya yang diberikan pada poros dinyatakan dengan N tk, karena :

1 Tk = 75 Kg m/detik, maka dalam satuan yang sama dengan U_1 ialah :

$$U_2 = 75 . 100N (kg cm/detik)$$

Jika tidak ada kehilangan daya:

$$U_1 = U_2$$

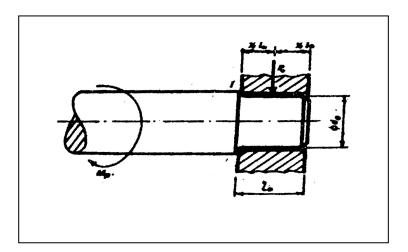
$$Mp = \frac{60.75.100}{2\pi} \frac{N}{n} = \frac{450.000}{2\pi} \cdot \frac{N}{n}$$

$$\frac{Mp}{60} = \frac{2\pi\pi}{60} = \frac{N}{75.100} \cdot \frac{N}{n}$$
(kg cm)
$$Mp = 71620 \cdot \frac{N}{n}$$
(kg cm)

Poros dengan Beban Puntir dan Lentur (Poros Dukung transmisi)

Seperti pada rumus tekanan bidang gaya tekan yang diperbolehkan pada tap poros :

$$F_0 \leq k.l_0.d_0$$
 (kg)


k = tekanan bidang dinamis yang diizinkan (kg/cm²)

Momen lentur yang terjadi pada penampang I – I

$$\begin{split} &\frac{l_0}{2} = W_1 \\ &M_1 = F \,. \\ &\frac{d_0^{\ 3} \cdot 1}{1} \\ &F = 0,2 \\ &\frac{0,2 \ d_0^{\ 3} \cdot \tau \tau}{l_0} \\ &\text{Maka} \\ &\frac{l_0}{d_0} = \sqrt{\frac{0,2 \ \tau 1}{k}} = \sqrt{\frac{\tau 1}{5k}} \end{split}$$

Gambar 2.23

Jika poros mendapat gabungan momen puntir dan momen lentur berlaku rumus Huber-Hunkey :

$$Mi \approx Mb = \sqrt{M1^2 + \frac{3}{4}} \approx 0.1 \, d^3.\tau 1$$

Mi = momen jumlah/momen ideal (kg cm)

d = diamter poros (cm)

 $\tau 1 = \text{tegangan lentur yang diizinkan dari bahan poros (kg/cm}^2)$

Tegangan jumlah/tegangan ideal:

$$\tau i = \tau 1 = \sqrt{\tau_1^2 + 3 \tau p}$$
 (kg / cm²)

τp = tegangan lentur yang diizinkan dari bahan poros (kg/cm²)

Pada perencanaan poros pehitungan dapat dititik beratkan paa momen lentur atau momen puntir yang bekerja tergantung pada konstruksi dan pembebanan pada poros.

Jika Mp dan M1 telah diketahui dapat digunakan rumus Mi ≈ Mb tersebut untuk menghitung momen jumlah.

BAB VI **KOPLING**

KOPLING

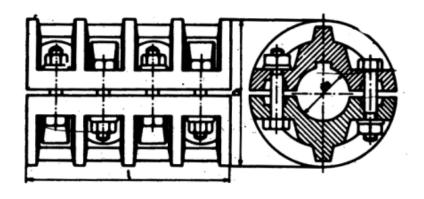
KOPLING

Kopling menghubungkan dua batang poros atau dua elemen mesin yang berputar.satu pada yang lain.

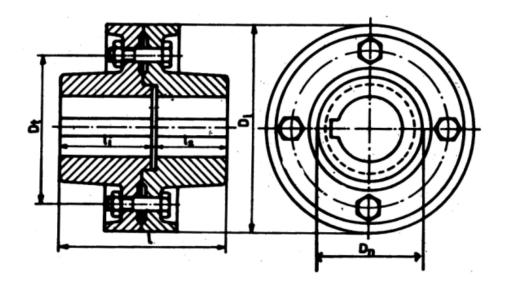
Menurut fungsinya

Menghubungkan poros satu ke poros yang lain Dapat dihubungkan dana dilepas sewaktu-waktu Slip bila terjadi beban lebih Ada yang dapat tersambung bila putaran tinggi

Kopling tetap - menghubungkan pada umumnya dua batang poros secara tetap (hunbungan dapat dile[pas dengan membuka ikatan kopling)

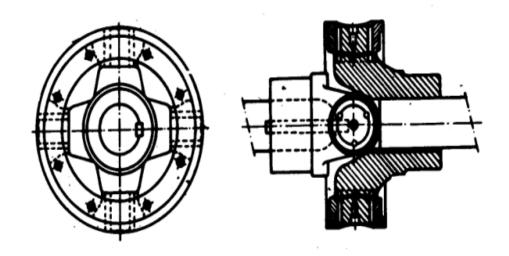

Kopling ini dipergunakan untuk menghubungkan motor diesel atau turbin dengan generator, sebuah motor listrik dengan pompa, dengn tujuan menghasilkan gerak penerus yang tidaak tersentak atau tanpa kejutan dan dapat menghindari getaran . Bahan adalah baja karbon, baja cor, perunggu, kuningan., paduan aluminium, fiber, karet, kulit, kayu keras

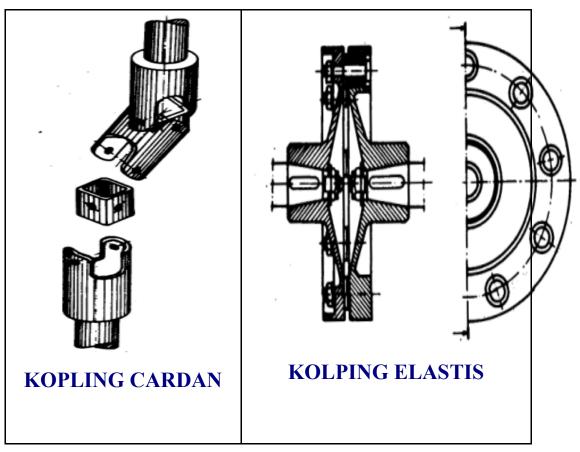
Kopling tidak tetap - dapat dengan mudaah menghubungkn dan memutuskan kemabli antara dua batang poros

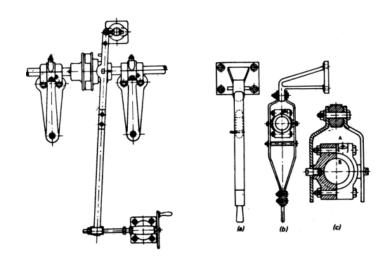

Kopling ini digunakan untuk memutar kompresor /komponen yang diam oleh poros yang telah berputar secara tenang daan kontinyu

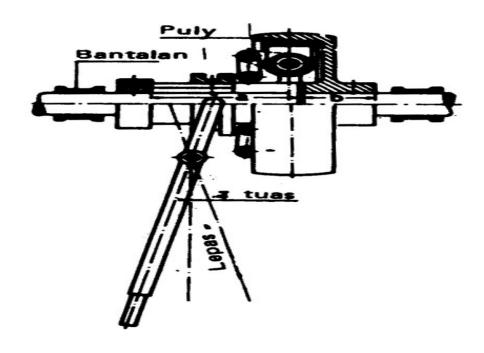
KOPLING JEPIT

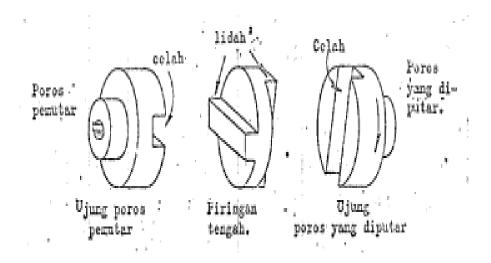
KOPLING FLENS BIASA

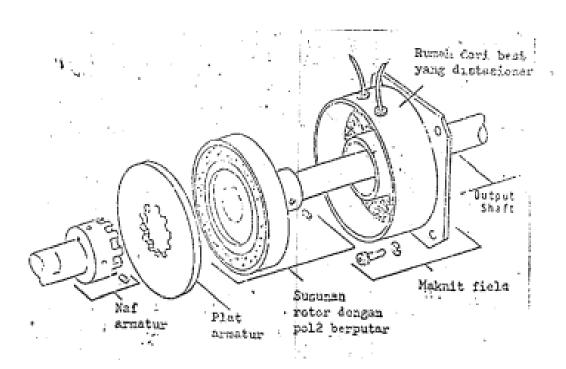

KOPLING OLDHAM




KOPLING CARDAN




Konstruksi detail alat penggerak KOPLING



Kopling Gesek Radial

BAB VIII

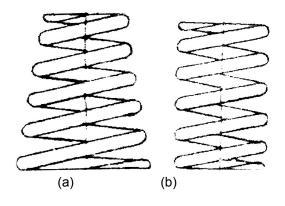
PEGAS

Pegas banyak digunakan dalam konstruksi mesin. Dapat berfungsi sebagai penekan, perapat dan pengunci suatu komponen atau pasangan yang lainnya. Atau berfungsi sebagai penahan kejutan, penyerap getaran, penyimpan energi, pengukur dan sebagainya.

MACAM-MACAM PEGAS

Ada bermacam-macam jenis pegas menurut bentuk dan fungsinya yaitu antara lain:

Pegas Tekan (gambar1)

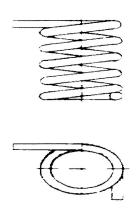

Pegas Tarik (gambar 2)

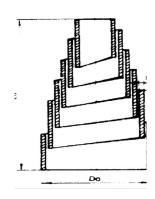
Pegas Momen (gambar 3)

Pegas Buffer (gambar 4)

Pegas Spiral (gambar 5)

Untuk pegas jenis 1, 2, 3 biasa disebut dengan pegas ulir. Pegas-pegas yang banyak dipakai dalam teknik mesin adalah jenis pegas ulir dengan penampang kawat pegas bulat, segiempat atau bujur sangkar. Tetapi yang umum dipakai adalah yang berpenampang bulat.





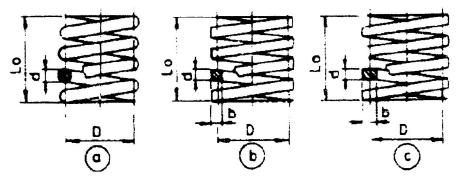
Gambar 1

Gambar 2

Gambar 3

Gambar 4

Kawat baja yang keras dan bermutu tinggi adalah kawat, untuk bahan pembuatan pegas.

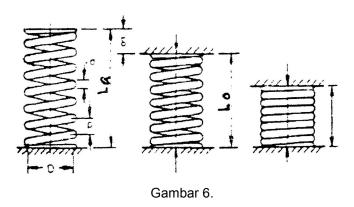

PERHITUNGAN MENCARI UKURAN PEGAS

Penampang kawat pegas dapat berbentuk bulat, bujur sangkar atau persegi panjang (gambar 5)

Kawat baja yang keras dan bermutu tinggi adalah kawat, untuk bahan pembuatan pegas.

PERHITUNGAN MENCARI UKURAN PEGAS

Penampang kawat pegas dapat berbentuk bulat, bujur sangkar atau persegi panjang (gambar 5)



Gambar 5. Penampang kawat pegas

1. Panjang Tidak Berbeban

Panjang pegas tekan tidak berbeban ditunjukkan seperti gambar 6 di bawah ini. Gambar 6a pegas tidak berbeban. Gambar 6b dibebani demikian rupa dengan F kg dan gambar 6c pegas dibebani demikian besarnya sehingga lilitan seluruhnya berimpit. Keadaan ini disebut "**Keadaan masip**".

Panjang pegas tidak berbeban dapat dirumuskan sebagai berikut :

$$L = (N - 0.5)d + n(h - d)$$

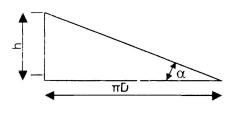
N = Jumlah lilitan aktif.

Pada pegas tekan harus ada lilitan ekstra, sebagai dudukan pegas tersebut agar pegas dapat berdiri tegak lurus bidang horizontal. Lilitan ini tidak aktif, berarti tidak semua lilitan pegas yang aktif maka:

$$N = n + (1,5 \text{ sampai } 2)$$

N = Jumlah lilitan pegas total.

Dalam pembuatan dan dalam kenyataannya lilitan ekstra ini harus berfungsi sebagai dudukan pegas itu sendiri, sehingga harus diasah agar bnar-benar bisa terletak pada posisi tegak. Jumlah lilitan aktif ini paling sedikit 3 buah.


Pitch ini dapat dihitung dengan rumus berikut :

$$d + \frac{(1,1 \text{ sampai } 1,2)}{n} \lambda \text{ maks.}$$
H =

I maks = adalah defleksi elastis yang dihitung pada beban maksimum (F maka). Dalam prakteknya h diambil 0,3 sampai 0,5 D.

D = diameter rata-rata pegas

Panjang kawat pegas yang dibutuhkan untuk membuat suatu pegas dapat dihitung sebagai berikut : (lihat gambar 7).

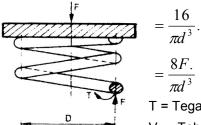
Keliling pegas setiap lilitan:

$$L = \frac{\pi D}{\cos a}$$

A = Sudut helik yang besarnya a : 0° - 12°

Panjang kawat pegas L:

$$L = \frac{\pi DN}{\cos a}$$


2. Mencari Besarnya Diameter Kawat

Perhitungan didasarkan pada momen yang bekerja pada pegas itu :

$$Ts = \frac{DF}{2}$$

$$Ts = \frac{T}{Wp}$$

Tegangan geser

T = Tegangan geser maksimum dalam kg/mm²

V_p = Tahanan puntir kawat pegas.

D = Diameter rata-rata pegas.

Karena adanya lengkungan dan tekukan dari pegas maka terjadi tegangan-tegangan dalam pegas sendiri. Dalam hal ini harus dikoreksi dengan suatu factor K sehingga tegangan geser maksimum pada kawat :

$$T = \frac{K.8.F.D}{\pi.d}$$
 karena index pegas
$$C = \frac{D}{d}$$

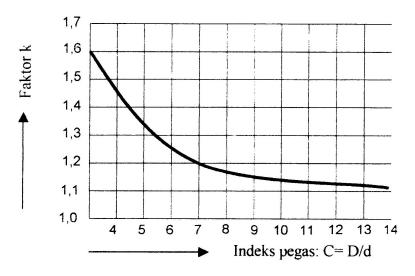
$$T = \frac{K.8.F.D}{\pi.d^2}$$
 Maka

$$d=1,6\sqrt{\frac{K.F.C}{T}}$$
 Jadi

dalam hal ini F adalah maksimum.

Teknik Kerja Elemen dan Mekanika

Faktor k dapat dirumuskan sebagai berikut :


$$K = \frac{A.C. - 1}{4C - 4} + \frac{0.615}{C}$$

Untuk penampang kawat bulat.

$$K = \frac{3.C - 1}{3C - 3}$$

Untuk penampang segi empat.

Harga k juga dapat dicari, bila indek pegas C diketahui dengan menggunakan diagram A.M Wahl (gambar 9).

Gambar 9. Diagram Wahl

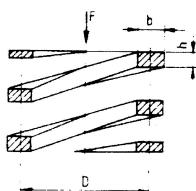
Diameter kawat pegas telah sistandarisasikan. Di bawah ini diberikan tabel dari SWG (Standard Wire Gauge).

Tabel 4.1. Standard kawat Pegas dan SWG.

SWG	Diameter (mm)	SWG	Diameter (mm)	SWG	Diameter (mm)	SWG	Diameter (mm)		
7/0	12.70	7	4.470	20	0.914	33	0.2540		
6/0	11.785	8	4.064	21	0.812	34	0.2337		
5/0	10.972	9	3.658	22	0.711	35	0.2134		
4/0	10.160	10	3.251	23	0.610	36	0.1930		
3/0	9.490	11	2.946	24	0.559	37	0.1727		
2/0	8.839	12	2.642	25	0.508	38	0.1524		
0	8.229	13	2.337	26	0.457	39	0.1321		
1	7.620	14	2.032	27	0.4166	40	0.1219		
2	7.010	15	1.829	28	0.3759	41	0.1118		
3	6.401	16	1.626	29	0.3150	42	0.1016		
4	5.893	17	1.422	30	0.3150	43	0.0914		
5	5.385	18	1.219	31	0.2946	44	0.0813		
6	4.877	19	1.016	32	0.2743	45	0.0711		

3. Besarnya Defleksi pada Pegas Penampang Bulat.

$$\lambda = \frac{\theta.D}{2}$$
 q = sudut defleksi yang disebabkan oleh momen T.


$$\Delta = \frac{16.F.D^2.n}{d^4.G} x \frac{D}{2}$$

$$= \frac{8.F.D^3.n}{d.G} \rightarrow \text{karena} \quad \frac{D}{2} = C$$

$$\lambda = \frac{8.F.C^3.n}{d.G}$$
 maka

$$\frac{8.C^{3}}{G.d}$$
 Juga I = I₁.n.F dimana I₁ =
$$\frac{8.C^{3}}{G.d}$$
 adalah batas patah satu lilitan.

4. Besarnya Defleksi pada Pegas Penampang Segi Empat.

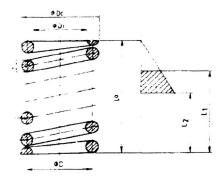
Tegangan geser maksimum

$$T = \frac{K.W.D(1,5+0,96)}{b^2 t^2}$$

Defleksi pegas

$$\lambda = \frac{2.83.W.D^3 n(b^2 + t^2)}{b^2.t^2.G}$$

Gambar 10. Defleksi


CARA MENGGAMBAR PEGAS ULIR

Seperti cara menggambar ulir, maka pegas digambarkan juga dengan penyederhanaan. Dalam gambar susunan pegas digambarkan dengan bekerja atau dengan kata lain dalam keadaan terpasang.

Tetapi dalam gambar kerja pegas digambarkan dalam keadaan tidak dibebani, dan dilengkapi pula dengan informasi yang menerangkan tentang beban maksimum dan panjang pemakaian serta panjang tidak berbeban. Dalam gambar kerja harus diterangkan pula arah lilitan pegas yaitu ke kiri atau ke kanan, sehingga tidak terjadi kesalahan dalam pembuatannya. Jumlah lilitan pegas juga harus dicantumkan.

Gambar 11 dan 12 adalah contoh gambar kerja untuk pegas tekan silindris dan pegas tarik silindris.

Gambar 11. Gambar Kerja

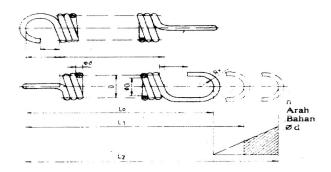
Bahan = ? L 10 = Panjang bebas (tak berbeban) ?

n = ? L1 = Panjang kerja (terpasang) ?

N = ? L2 = Panjang berbeban ?

Arah = kiri/kanan

Æ Di = Diameter dalam dari pegas. Ini juga perlu dicantumkan karena untuk menunjukkan ukuran mal untuk melilitkan waktu pegas dikerjakan.


Æ Do = Diameter luar pegas. Ukuran ini juga perlu dicantumkan karena untuk memperkirakan dudukan dari pegas bila ditempatkan pada rumah pegas.

Gambar kerja pegas tarik silindris seperti gambar 12 berikut ini. Pada gambar ini dapat dilihat bahwa pegas dalam keadaan tidak berbeban lilitannya saling berimpit satu sama lainnya. Yang perlu juga dijelaskan pada gambar kerja untuk pegas tarik ini adalah mengenai bentuk loopnya. Apakah bentuk loopnya sejajar atau saling tegak lurus.

Gambar Kerja Pegas Tarik

Jika loop pegas tidak sejajar seperti contoh ini maka perlu digambar dua pandangan seperti gambar ini. Dan juga dikarenakan loop pegas mempunyai ukuran yang berbeda. Jika pegas atarik mempunyai loop yang sejajar biasanya hanya digambarkan satu pandangan saja.

N A r a h

Bahan = ?

Æ d = ?

Gambar 12. Gambar kerja pegas tarik

Keterangan:

L0 = Panjang pegas tak berbeban

L1 = Panjang pegas terpasang (panjang kerja).

L2 = Panjang pegas berbeban.

Pembuatan gambar pegas menggunakan gambar pegas sebenarnya, atau menggunakan konvensi atau juga menggunakan simbol tergantung dari kebutuhannya. Yang banyak dipakai dalam gambar kerja atau gambar produksi adalah gambar konvensi pegas. Dan biasanya dengan ditunjukkan penampang bentuk pegas dan penampang kawat pegasnya.

Contoh:

Rencanakanlah dan buatlah gambar kerjanya sebuah pegas ulir tekan silindris untuk beban maksimum 120 kg defleksi 25 mm. Indek pegas = 5

Tegangan geser yang diperbolehkan = 45 kg/mm²

 $G = 8500 \text{ kg/mm}^2$

Penampang pegas adalah bulat jadi:

Bilangan Wahl : K = $\frac{4C-1}{4C-4} + \frac{0,615}{C}$

Jawab:

$$F = 120 \text{ kg}$$

$$\lambda$$
 = 25 mm

$$C = 5$$

$$\tau$$
 = 45 kg/mm2

$$\kappa = \frac{4C - 1}{4C - 4} + \frac{0.615}{C}$$

$$K = \frac{4.5 - 1}{4.5 - 4} + \frac{0.615}{5}$$

$$= \frac{19}{6} + 0{,}123$$

1,31

Mencari diameter kawat pegas :

$$t = \frac{K.8.F.C}{\pi . d^2}$$

$$\frac{K.8.F.C}{\pi . \tau} = \frac{1,31.8.120.5}{3,14.45} = 44,5$$

$$d^2 =$$
 3, Jadi d = 6,7 mm.

Diambil dari tabel 41 standard SWG no.2 dengan diameter = 7,010 mm. Diameter pegas D = C.d = 5.7,010 = 35,05 mm. Jumlah lilitan aktif n dicari sebagai berikut :

$$1 = \frac{8.F.C^3.n}{d.G}$$

$$n = \frac{\lambda . d.G}{8.F.C^3}$$

$$= \frac{25.(7,010).8500}{8.120.5^3}$$

= 12,41 lilitan

Dibuat n = 13 lilitan.

Macam pegas	Gambar	Konvensi	Simbol
PEGAS TEKAN SILINDRIS			
PEGAS TEKAN KONIS			
PEGAS TARIK SILINDRIS		a F	
PEGAS TARIK DOUBLE KONIS			CWWW)
PEGAS MOMEN SILINDRIS	MAMA	W W	MW
SIEMBINO			

Gambar 13. Macam-macam pegas, konvensial penggambaran dan simbol

Teknik Kerja Elemen dan Mekanika

Jumlah lilitan total N = n + 2 + 2 = 15 lilitan.

Panjang tak berbeban:

$$L0 = (N - 0.5) d + n (h - d)$$

H = diambil 0,4 D

$$= 0,4 . 35,05$$

= 14,02 mm

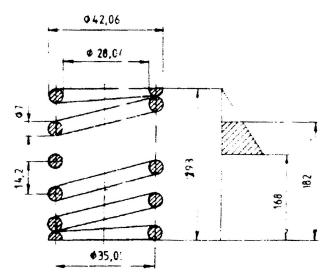
$$L0 = (N - 0.5 d + n (h - d))$$

$$= (15 - 0.5) 7.010 + 13 (14.02 - 7.010)$$

dibuat L0 = 193 mm

Bila beban pegas terpasang pada beban 30 kg, maka panjang pegas waktu terpasang adalah sebagai berikut :

$$= \frac{8.F.C^3.n}{d.G} = \frac{8.30.125.13}{7,010.8500} = 10,63$$
 mm


Jadi Lb₁ = $193 - 10,63 = 182,37 \sim 182 \text{ mm}$

Panjang minimum pegas = L0 - 25 = 193 - 25 = 168 mm

Diameter dalam $D_1 = D - d$

$$= 35 - 7,010 = 28,04 \text{ mm}$$

Gambar kerja dapat seperti gambar 14 berikut ini :

Gambar 14. Gambar kerja pegas.

Rencanakanlah sebuah pegas tekan silindris yang digunakan untuk suatu mesin.

Panjang pegas terpasang = 8 cm.

Panjangn minimum 40 kg.

Beban maksimum 80 kg.

Diameter dalam = 2,8 cm.

Tegangan geser 450 kg/cm².

Modulus $G = 800.000 \text{ kg/cm}^2$.

Jawab:

$$\frac{D}{2} = \frac{\pi}{16}.\tau.d \rightarrow \text{diambil F maksimum}$$
T = F x

$$\left(\frac{2.8+d}{2}\right) = \frac{\pi}{16}.450.d^3$$

$$112 + \frac{\pi}{16}.450.d^3$$

 $d = 449 \sim 4,5 = 7,3$ cm (dicari dengan coba-coba).

Jadi D = 2.8 + 4.5 = 7.3 cm.

$$C = \frac{D}{d} = \frac{7.3}{4.5} = 1.62$$

$$\text{Bilangan Wahl = K = } \frac{4C-1}{4C-4} + \frac{0,615}{C}$$

$$\frac{4.1,62-1}{4.1,62-4} + \frac{0,615}{1,62}$$

= 2.58

$$t = \frac{K.8.F.C}{d^2}$$

$$d2 = \frac{K.8.F.C}{\pi.\tau} = \frac{2,58.8.80.1,6}{\pi.450} = 1,568$$

d = 1,252 cm

Dipilih dari tabel 41, maka diambil kawat pegas 7/0 dengan d = 12,7 mm.

Jumalah lilitan aktif:

$$\frac{2.(1,27)^4.800.000}{8.80.(7,37^2)}$$

n =

= 13,16 lilitan

Dibuat n = 14 lilitan.

Jumlah lilitan total = N = n + 2 = 14 + 2 = 16 lilitan.

Panjang pegas tak berbeban :

$$L0 = (N - 0.5) d + n (h - d)$$

H diambil 0.5 D = 0.5 . 7.3 = 3.65 cm

$$L0 = (16\ 0.5)\ 1.27 + 14\ (3.65 - 1.27)$$

= 39 cm

Lb = 39 - 10 = 29 cm

Kemudian buatlah gambar kerja seperti gambar 14, dengan ukuran-ukuran yang telah didapat.

DAFTAR PUSTAKA

Sularso, *Elemen Mesin*, Pradnya Paramitha, Jakarta, 1980

Schweizerischer, Normen Auszug, Bezug durch das VSM-Normenburo, 1991

Tabellenbuch Metall, Europa Fachbuchreihe, 1982

Homborg, Gerhard, *Tabellenbuch Metall-und Maschinentechnik,* Friedrich, Bonn, 1988

